Установившееся движение жидкости характеризуется уравнением

Установившееся движение жидкости характеризуется уравнением

3.1. Площадь поперечного сечения потока, перпендикулярная направлению движения называется

а) открытым сечением;
б) живым сечением;
в) полным сечением;
г) площадь расхода.

3.2. Часть периметра живого сечения, ограниченная твердыми стенками называется

а) мокрый периметр;
б) периметр контакта;
в) смоченный периметр;
г) гидравлический периметр.

3.3. Объем жидкости, протекающий за единицу времени через живое сечение называется

а) расход потока;
б) объемный поток;
в) скорость потока;
г) скорость расхода.

3.4. Отношение расхода жидкости к площади живого сечения называется

а) средний расход потока жидкости;
б) средняя скорость потока;
в) максимальная скорость потока;
г) минимальный расход потока.

3.5. Отношение живого сечения к смоченному периметру называется

а) гидравлическая скорость потока;
б) гидродинамический расход потока;
в) расход потока;
г) гидравлический радиус потока.

3.6. Если при движении жидкости в данной точке русла давление и скорость не изменяются, то такое движение называется

а) установившемся;
б) неустановившемся;
в) турбулентным установившимся;
г) ламинарным неустановившемся.

3.7. Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени называется

а) ламинарным;
б) стационарным;
в) неустановившимся;
г) турбулентным.

3.8. Расход потока обозначается латинской буквой

3.9. Средняя скорость потока обозначается буквой

3.10. Живое сечение обозначается буквой

3.11. При неустановившемся движении, кривая, в каждой точке которой вектора скорости в данный момент времени направлены по касательной называется

а) траектория тока;
б) трубка тока;
в) струйка тока;
г) линия тока.

3.12. Трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением называется

а) трубка тока;
б) трубка потока;
в) линия тока;
г) элементарная струйка.

3.13. Элементарная струйка — это

а) трубка потока, окруженная линиями тока;
б) часть потока, заключенная внутри трубки тока;
в) объем потока, движущийся вдоль линии тока;
г) неразрывный поток с произвольной траекторией.

3.14. Течение жидкости со свободной поверхностью называется

а) установившееся;
б) напорное;
в) безнапорное;
г) свободное.

3.15. Течение жидкости без свободной поверхности в трубопроводах с повышенным или пониженным давлением называется

а) безнапорное;
б) напорное;
в) неустановившееся;
г) несвободное (закрытое).

3.16. Уравнение неразрывности течений имеет вид

3.17. Уравнение Бернулли для идеальной жидкости имеет вид

3.18. На каком рисунке трубка Пито установлена правильно

3.19. Уравнение Бернулли для реальной жидкости имеет вид

3.20. Член уравнения Бернулли, обозначаемый буквой z, называется

а) геометрической высотой;
б) пьезометрической высотой;
в) скоростной высотой;
г) потерянной высотой.

3.21. Член уравнения Бернулли, обозначаемый выражением называется

а) скоростной высотой;
б) геометрической высотой;
в) пьезометрической высотой;
г) потерянной высотой.

3.22. Член уравнения Бернулли, обозначаемый выражением называется

а) пьезометрической высотой;
б) скоростной высотой;
в) геометрической высотой;
г) такого члена не существует.

3.23. Уравнение Бернулли для двух различных сечений потока дает взаимосвязь между

а) давлением, расходом и скоростью;
б) скоростью, давлением и коэффициентом Кориолиса;
в) давлением, скоростью и геометрической высотой;
г) геометрической высотой, скоростью, расходом.

3.24. Коэффициент Кориолиса в уравнении Бернулли характеризует

а) режим течения жидкости;
б) степень гидравлического сопротивления трубопровода;
в) изменение скоростного напора;
г) степень уменьшения уровня полной энергии.

3.25. Показание уровня жидкости в трубке Пито отражает

а) разность между уровнем полной и пьезометрической энергией;
б) изменение пьезометрической энергии;
в) скоростную энергию;
г) уровень полной энергии.

3.26. Потерянная высота характеризует

а) степень изменения давления;
б) степень сопротивления трубопровода;
в) направление течения жидкости в трубопроводе;
г) степень изменения скорости жидкости.

3.27. Линейные потери вызваны

а) силой трения между слоями жидкости;
б) местными сопротивлениями;
в) длиной трубопровода;
г) вязкостью жидкости.

3.28. Местные потери энергии вызваны

а) наличием линейных сопротивлений;
б) наличием местных сопротивлений;
в) массой движущейся жидкости;
г) инерцией движущейся жидкоcти.

3.29. На участке трубопровода между двумя его сечениями, для которых записано уравнение Бернулли можно установить следующие гидроэлементы

а) фильтр, отвод, гидромотор, диффузор;
б) кран, конфузор, дроссель, насос;
в) фильтр, кран, диффузор, колено;
г) гидроцилиндр, дроссель, клапан, сопло.

3.30. Укажите правильную запись

3.31. Для измерения скорости потока используется

а) трубка Пито;
б) пьезометр;
в) вискозиметр;
г) трубка Вентури.

3.32. Для измерения расхода жидкости используется

а) трубка Пито;
б) расходомер Пито;
в) расходомер Вентури;
г) пьезометр.

3.33. Укажите, на каком рисунке изображен расходомер Вентури

3.34. Установившееся движение характеризуется уравнениями

3.35. Расход потока измеряется в следующих единицах

3.36. Для двух сечений трубопровода известны величины P1, υ1, z1 и z2. Можно ли определить давление P2 и скорость потока υ2?

а) можно;
б) можно, если известны диаметры d1 и d2;
в) можно, если известен диаметр трубопровода d1;
г) нельзя.

3.37. Неустановившееся движение жидкости характеризуется уравнением

3.38. Значение коэффициента Кориолиса для ламинарного режима движения жидкости равно

3.39. Значение коэффициента Кориолиса для турбулентного режима движения жидкости равно

3.40. По мере движения жидкости от одного сечения к другому потерянный напор

а) увеличивается;
б) уменьшается;
в) остается постоянным;
г) увеличивается при наличии местных сопротивлений.

3.41. Уровень жидкости в трубке Пито поднялся на высоту H = 15 см. Чему равна скорость жидкости в трубопроводе

Установившееся и неустановившееся движение.

Установившимся называют такое движение жидкости, при ко­тором скорость потока и давление в любой его точке не изменяются с течением времени и зависят только от ее положения в потоке, т. е. являются функциями ее координат. Примерами установившегося движения могут служить истечение жидкости из отверстия резервуара при постоянном напоре, а также поток воды в канале при не­изменном его сечении и постоянной глубине.

Неустановившимся называют такое движение жидкости, при ко­тором скорость движения и давление в каждой данной точке изме­няются с течением времени, т. е. являются функциями не только координат, но и времени. Примером неустановившегося движения служит истечении жидкости из отверстия резервуара при перемен­ном напоре. В этом случае в каждой точке сечения струи, выте­кающей из отверстия, скорость движения и давление изменяются во времени.

Линия тока. В точках 1, 2, 3 и т. д. потока, взятых на расстоя­нии ΔS друг от друга, проведем векторы u1, u2, u3, показывающие значение и направление скоростей движения частиц жидкости в данный момент времени (рис. 1.18). Получим ломаную линию 1—2— 3и т. д. Если уменьшить длину от­резков ΔS, то в пределе ломаная линия станет кривой.

Рис. 1.18. Схематическое изображение линии тока в потоке

Эта кривая, называемая линией тока, характеризуется тем, что в данный момент времени во всех ее точках векторы скоростей бу­дут касательными к ней.

Элементарная струнка. Если в движущейся жидкости выделить бесконечно малый замкнутый контур и через все его точки провести линии тока, соответствующие данному моменту времени, получится как бы трубчатая непроницаемая поверхность, называемая трубкой тока.

Масса жидкости, движущейся внутри трубки тока, образует элементарную струйку.

Поток. Совокупность элементарных струек, представляющая собой непрерывную массу частиц, движущихся но какому-либо направлению, образует поток жидкости. Поток может быть пол­ностью или частично ограничен твердыми стенками, например в трубопроводе или канале, и может быть свободным, например струя, выходящая из сопла гидромонитора.

Рис. 1.19. Условия плавно из­меняющегося движения

Равномерным называют такое уста­новившееся движение жидкости, при котором живые сечения и средняя скорость потока не меняются по его длине. Примером равномерного дви­жения служит движение жидкости в цилиндрической трубе или в кана­ле неизменного сечения и постоянной глубины.

Неравномерным называют такое установившееся движение жид­кости, при котором живые сечения и средние скорости потока из­меняются по его длине. Примером неравномерного движения служит движение жидкости в конической трубе, в естественном русле, на перепаде.

При равномерном движении липни тока представляют собой систему прямых параллельных линий. Такое движение называется также параллельно–струйным. При движении жидкости в естествен­ных руслах живое сечение обычно непрерывно изменяется вдоль по­тока как по форме, так и по площади, и движение жидкости являет­ся установившимся неравномерным. Для облегчения изучения та­кого движения в гидравлике введено понятие плавно изменяюще­гося движения, которое характеризуется следующими свойствами (рис. 1.19):

Последнее свойство просто обосновывается. Если внутри плавно изменяющегося потока выделить частицу жидкости и спроекти­ровать все действующие на нее силы па плоскость живого сечения, то вследствие того, что скорости и ускорения почти перпендикуляр­ны живому сечению, силы инерции в уравнение равновесия не войдут; в связи с этим уравнение равновесия и закон распределения давления в плоскости живого сечения не будут отличаться от закона распределения давления в жидкости, находящейся в покое.

Напорным называется поток, у которого но всему периметру живого сечения жидкость соприкасается с твердыми стенками. Примером напорного потока может служить движение воды в водо­проводных трубах.

Безнапорным называется поток со свободной поверхностью. Примером безнапорного потока служит движение воды в реках, каналах и канализационных трубах.

1. В механике сплошной среды применяются два метода исследования – метод Л. Эйлера и метод Лагранжа.

В методе Л.Эйлера рассчитываются параметры сплошной среды в одних и тех же неподвижных точках пространства. Этот метод чаще всего используется в гидромеханике. Здесь данные расчета легко сравнивать с результатами экспериментов, т.к. все датчики (давления, температуры, скорости и т.п.) устанавливаются в неподвижных точках (труб, воздуховодов и т.п.).

В методе Лагранжа рассчитываются параметры (скорость, давление, температура) в одних и тех же подвижных точках среды. Метод Лагранжа более сложный. Он используется в научных исследованиях и в теории упругости. Здесь рассчитываются траектории частиц, т.к. здесь важно рассчитать перемещение точек тела. Здесь датчики параметров перемещаются вместе с точками твердого тела.

Гидродинамика. Характер изменения поля скоростей.

По характеру изменения поля скоростей во времени движения жидкости выделяют установившиеся и неустановившиеся, квазистационарное.

Установившееся движение – движение, характеризующееся тем, что в любом месте потока жидкости скорость (и давление) с течением времени претерпевают изменения, имеется в виду, что указанные показатели зависят исключительно от координат точки. Их величина изменяется лишь при переходе к другой точке пространства:

Неустановившееся движение – движение, характеризующееся тем, что в любом месте потока жидкости скорость с течением времени претерпевает изменения, т. е. выступает как функция координат и времени:

Квазистационарное движение – движение, характеризующееся тем, что изменчивость характеристик движения жидкости в течение отобранного временного отрезка не будет существенной, имеется в виду, что ее влияние лежит в пределах допускаемой точности решения, и его можно рассматривать как установившееся.

При описании установившегося движения жидкости выделяют равномерное и неравномерное.

Равномерным принято обозначать установившееся движение, при котором живые сечения вдоль потока неизменны: в этом случае w = const; средние скорости по длине потока также неизменны, т.е. v = const.

Установившееся движение принято обозначать неравномерным, когда выполняется условие, что распределение скоростей в различных поперечных сечениях разное; при этом средняя скорость и площадь поперечного сечения потока могут пребывать и постоянными вдоль потока.


источники:

http://helpiks.org/6-34309.html

http://www.calc.ru/Gidrodinamika-Kharakter-Izmeneniya-Polya-Skorostey.html