Утверждение о количестве корней уравнения

Теорема о корне при решении уравнений. Урок алгебры. 9-й класс

Разделы: Математика

Класс: 9

Цели урока:

  1. Использование особенностей монотонности функций для активизации творческого мышления учащихся.
  2. Формирование у школьников навыков применения теоремы о корне для решения уравнений.
  3. Умение обобщать, конкретизировать и анализировать изучаемый материал.
  4. Обучение учащихся нестандартным способам решения задач.
  5. Развитие логики и навыков самостоятельной работы.
  6. Воспитание ответственного отношения к учебному труду.

Тип урока: урок изучения нового материала.

Оборудование: учебник “Алгебра 9” (автор: Мордкович А. Г.), задачник “Алгебра 9” (авторы: Мордкович А. Г., Тульчинская Е.Е. и др.), книга для преподавателей “Алгебра 9” (авторы: Афанасьева Т.Л., Тапилина Л.А.), карточки с памяткой для самостоятельной работы по данной теме, компьютер, мультимедийный проектор, экран.

Предложенный урок расширяет программу по теме “Функции”. Учащиеся уже знакомы с основными свойствами функций, владеют навыками грамотного чтения графиков и умеют применять алгоритм исследования функций. На уроке основной упор делается на использование свойств монотонности функций для решения уравнений. Рассматривается теорема о корне. В ходе урока каждый учащийся должен достигнуть определенного уровня понимания материала, поэтому этап усвоения знаний разработан дифференцированно.

Ожидаемый результат по окончании изучения материала:

1-й уровень: каждый ученик должен знать геометрическую модель теоремы о корне и уметь установить связь монотонности функций, входящих в уравнение, с количеством корней соответствующего уравнения.

2-й уровень: каждый ученик должен знать алгоритм решения уравнений с использованием теоремы о корне и уметь применять ее для решения нестандартных задач.

На уроке рассматриваются различные виды уравнений, решаемых с помощью теоремы о корне. В дальнейшем учащимся предлагается использовать предложенный алгоритм в домашней контрольной работе (§16, задачник “Алгебра 9” авторы: Мордкович А. Г., Тульчинская Е.Е. и др.). Для организации проверочной работы используются задания из практикума (составитель автор).

Ход урока

I этап. Организационный момент (1 мин.).

II этап. Актуализация опорных знаний и умений (7 мин.).

Учитель: Необходимо повторить пройденное для того, чтобы успешно перейти к усвоению нового материала. На протяжении изучения темы “Функции” вы постепенно учились читать графики функций, используя алгоритм для их исследования. Остановимся на особенностях возрастающей и убывающей функций. Подборка материала подготовлена учащимися.

Выступление учащихся сопровождается показом презентации.

III этап. Объяснение нового материала (10 мин).

Учитель: Сегодня изучение нового материала мы начнем с доказательства теоремы о корне.

Теорема о корне.

Пусть функция y=f(x) возрастает (или убывает) на множестве (f), число a — любое из значений, принимаемых f(x) на множестве X, тогда уравнение f(x)=a имеет единственный корень на множестве X.

Доказательство:

Рассмотрим возрастающую функцию f(x) (в случае убывающей функции рассуждения аналогичны). По условию на множестве X существует такое число b, что f(b)=a. Покажем, что b — единственный корень уравнения f(x)=a.

Допустим, что на множестве X есть еще число , такое, что f(c)=a. Тогда или c b. Но функция f(x) возрастает на множестве X, поэтому соответственно либо f(c) f(b). Это противоречит равенству f(c)=f(b)=a. Следовательно, сделанное предположение неверно и на множестве X, кроме числа b, других корней уравнения f(x)=a нет.

Геометрическая модель теоремы о корне может быть представлена как на экране, так и на плакате.

Учитель: Давайте вместе рассмотрим следующие примеры:

Сколько корней имеет уравнение?

(1);

x 5 = (2).

Учащиеся отмечают, что на своих областях определения функция возрастает, а функция y = — x 5 – убывает соответственно. По теореме о корне как уравнение (1), так и уравнение (2) имеют по одному корню.

Учитель: Откроем учебник на 98 стр. и обратим внимание на то, что при решении уравнения x 5 =3-2x (пример 1, рис. 79) геометрическая модель наглядно иллюстрирует следствие, которое следует из теоремы о корне:

Следствие.

“Если функция y=f(x) возрастает, а функция y=g(x) убывает и если уравнение f(x)=g(x) имеет корень, то только один”.

По учебнику разбирается пример 1.

Опираясь на это утверждение, можем изящно решить уравнение

x 5 = 3 — 2x без чертежа, следуя следующему алгоритму:

  1. заметим, что при x=1 выполняется равенство 1 5 =3-2·1,
    значит, x=1 – корень уравнения (этот корень мы угадали);
  2. функция у = 3 — 2x убывает, а функция у = x 5 возрастает,
    значит, корень у заданного уравнения только один и
    этим корнем является значение x=1.

Учитель: Определим сколько решений имеет уравнение x 5 = — 3x +5 с комментированием на месте.

Решение:

  1. рассмотрим функции у = x 5 и у = — 3x + 5; заметим, что область определения этих функций одинакова: D(у)=(-; +);
  2. на D(у) функция у = — 3x + 5 убывает, а функция у = x 5 возрастает. Значит, по следствию из теоремы о корне, у заданного уравнения только один корень, т.е. уравнение, имеет одно решение.

Учитель: Цель нашего урока состоит в том, чтобы научиться решать задачи, используя теорему о корне (следствие).

На экране высвечивается обобщенный алгоритм решения уравнения f(x)=g(x) с использованием следствия из теоремы о корне:

  1. Определить при каких значениях x уравнение превращается в верное числовое равенство, (т.е. угадать корень уравнения – x=b).
  2. Ввести две функции y=f(x) и y=g(x).
  3. Исследовать y=f(x) и y=g(x) на монотонность. Если y=f(x)возрастает (убывает), а y=g(x) убывает (возрастает), то уравнение f(x)=g(x) имеет единственный корень – x=b (ссылка на следствие).

IV этап. Усвоение новых знаний (23 мин.)

Учитель: Карточки и памятка для самостоятельной работы лежат у вас на столах. Приступим к выполнению заданий.

Так как нетрадиционные методы решения задач вызывают трудность у большинства учащихся, то следующее уравнение предлагается решить вместе. Для оформления решения учащийся по желанию выходит к доске (дается уравнение 2 уровня).

Решить уравнение: (3).

Решение: в начале запишем уравнение (3) в виде

,

затем воспользуемся теоремой о корне.

  1. при x=5 уравнение превращается в верное числовое равенство: ; 5=5 (т.е. угадали корень уравнения – x=5).
  2. заметим, что в левой части уравнения функция возрастает на D(у)=[3; +); значит, у заданного уравнения корень только один и этим корнем является значение x=5.

После того как данное задание выполнено, класс приступает к решению уравнений в зависимости от восприятия материала:

1) те, кто попытается справиться самостоятельно с не очень сложными уравнениями;
2) те, у кого решение уравнений не вызывает затруднений.

В соответствии с этим учащиеся получают дифференцированные задания.

1 уровень.

1. (Ответ: 0);

2. (Ответ: 2);

3. (Ответ: 3);

4. (Ответ: 4);

5. (Ответ: -2);

6. (Ответ: 1).

2 уровень.

1. (Ответ: 1);

2. (Ответ: -1);

3. (Ответ: -2);

4. (Ответ: 2);

5. (Ответ: -3);

6. (Ответ: -2);

7. (Ответ: 2).

Необходимо проверить правильность выполнения заданий, поэтому от каждой группы выступает ученик, демонстрируя решение одного из уравнений на доске.

V этап. Итог урока (2 мин.).

Подводя итог урока, учитель и ученики выясняют трудности при решении уравнений и обсуждают, на что они должны обратить внимание при выполнении домашнего задания.

VI этап. Домашнее задание (1мин.).

Учитель: задание на дом следующее: доделать задания на карточках; если на уроке выполнено все, то воспользоваться дополнительной карточкой из материалов для самостоятельной работы; домашняя контрольная работа (§16, задачника “Алгебра 9”).

Заключительное слово учителя (1мин). Любовь к предмету не возникает просто так. Двигаясь постепенно от простого к сложному, анализируя и обобщая учебный материал, интересуясь “изящными” способами решения, можно понять красоту алгебры. Сегодня знание теории и практические навыки, что равнозначно, показали многие из вас. Особую благодарность заслуживают ребята, создавшие прекрасную презентацию. Постижение мира бесконечно: дерзайте, творите, ошибайтесь, ищите ответы на вопросы, только не “проспите” лучшие годы. “Жажда к жизни” – залог успеха.

Материалы к уроку для самостоятельной работы учащихся

1. Памятка по решению уравнений.

Теорема о корне.

Пусть функция y=f(x) возрастает (или убывает) на множестве (f), число a — любое из значений, принимаемых f(x) на множестве X, тогда уравнение f(x)=a имеет единственный корень на множестве X.

Следствие.

“Если функция y=f(x) возрастает, а функция y=g(x) убывает и если уравнение f(x)=g(x) имеет корень, то только один”.

Алгоритм решения уравнения f(x)=a с использованием теоремы о корне:

  1. определить при каких значениях x уравнение превращается в верное числовое равенство, (т.е. угадать корень уравнения – x=b);
  2. исследовать функцию y=f(x), стоящую в левой части уравнения, на монотонность. Если y=f(x) возрастает (убывает), то уравнение f(x)=a имеет единственный корень – x=b (ссылка на теорему).

Алгоритм решения уравнения f(x)=g(x) с использованием следствия из теоремы о корне:

Рекомендации:

Сначала, если это необходимо, уравнение привести к такому виду, чтобы было удобно исследовать на монотонность функции, стоящие в левой и правой частях уравнения, а затем следовать согласно следующему алгоритму:

  1. определить при каких значениях x уравнение превращается в верное числовое равенство, (т.е. угадать корень уравнения – x=b);
  2. ввести две функции y=f(x) и y=g(x);
  3. исследовать y=f(x) и y=g(x) на монотонность. Если y=f(x) возрастает (убывает), а y=g(x) убывает (возрастает), то уравнение f(x)=g(x) имеет единственный корень – x=b (ссылка на следствие).

2. Практические задания.

Рекомендации: рассмотрим готовое решение уравнения (возможен такой вариант оформления).

Решить уравнение: .

Решение:

Функция f(x) = определена и монотонно возрастает на D(у)=[0; +);

На основании теоремы о корне уравнение имеет не более одного корня.

Т.к. f (1) = 4, то x = 1 – корень уравнения.

Дополнительная карточка (подбор заданий [1]).

;

;

;

;

;

.

Литература.

  1. Ткачук В.В. Математика абитуриенту. – М.: МЦНМО, 2005.

Уравнение и его корни

Время чтения: 11 минут

Основные понятия уравнения

Уравнением называют равенство, в котором одна из переменных неизвестна, и её нужно найти. Значение этой неизвестной должно быть таким, чтобы равенство было верным.

К примеру: 3+4=7 это числовое равенство, при вычислении которого с левой стороны получается 7=7.

Уравнением же будет называться следующее равенство: 3+х=7, поскольку есть неизвестная переменная х, её значение можно найти.

Из этого уравнения следует, что переменная х=4, только при таком его значении равенство 3+х=7, будет верным.

Неизвестные переменные принято писать в виде маленьких латинских букв, можно любыми, но чаще используют x,y,z.

Получается, чтобы равенство сделать уравнением необходимо, чтобы в нем была буква, значение которой неизвестно.

Как мы понимаем существует множество примеров уравнений с разными арифметическими действиями.

Пример: х + 5 = 1= 9; z — 2 = 7; 9 * y = 18, 6 : f = 2

Помимо этого существуют уравнения со скобками. К таким уравнениям относится 8 : (х — 4) = 2 * (8 — х), неизвестных может быть несколько, они могут быть, как слева уравнения, так и справа или в обеих частях.

Помимо таких простых уравнений они могут быть с корнями, логарифмами, степенями и тд.

Уравнение может содержать несколько переменными, тогда их принято называть, соответственно уравнениями с двумя, тремя и более переменными.

3 * а = 15 : х — уравнение с двумя переменными:

8 — а = 5 * х — z — уравнение с тремя переменными.

Корень уравнения

Мы часто слышим фразу на уроках математики, «найдите корень уравнения», давайте разберёмся, что же это значит.

В примере 3+х=7, можно представить вместо буквы число, и уравнение тогда станет равенством, оно может быть либо верным, либо неверным, если поставить х=3, то первичное равенство примет вид 3+3 = 7 и станет неверным, а если х= 4 то равенство 3+4=7 будет верным, а значит х = 4 будет называться корнем или по другому решением уравнения 3+х=7.

Определение.

Отсюда можно выделить следующее определение: корень уравнения — это такое значение неизвестной переменной, при котором числовое равенство будет верным.

Стоит отметить, что корней может быть несколько или не быть вовсе.

Рассмотрим подробнее пример который не будет иметь корней. Таким примером станет 0 * х = 7, сколько бы чисел мы сюда не подставляли равенство не будет верным, так как умножая на ноль будет ноль, а не 7.

Но существуют и уравнения с множественным числом корней, к примеру, х — 3 = 6, в таком уравнении только один корень 9, а в уравнении квадратного вида х2 = 16, два корня 4 и -4, можно привести пример и с тремя корнями х * (х — 1) * (х — 2) = 0, в данном случае три решения ноль, два и один.

Для того чтобы верно записать результат уравнения мы пишем так:

  • Если корня нет, пишем уравнение корней не имеет;
  • Если есть и их несколько, они либо прописываются через запятые, либо в фигурных скобках, например, так: <-2, 3, 5>;
  • Еще одним вариантом написания корней, считается запись в виде простого равенства, к примеру неизвестная х а корни 3,5 тогда результат прописывается так: х=3, х=5.
  • или прибавляя индекс снизух1 =3 , х2 = 5. данным способом указывается номер корня;
  • Если решений уравнения бесконечное множество, то запись будет либо в виде числового промежутка от и до, или общепринятыми обозначениями. множество натуральных чисел N, целых – Z, действительных — R.

Стоит отметить, что если уравнение имеет два и более корней, то чаще употребляется понятие решение уравнения. Рассмотрим определение уравнения с несколькими переменными.

Решение уравнения с двумя и более переменными, означает, что эти несколько значений превращают уравнение в верное равенство.

Представим, что мы имеем следующее уравнение х + а = 5, такое уравнение имеет две переменные. Если мы поставим вместо них числа 3 и 6 то равенство не будет верным, соответственно и данные числа не являются решением для данного примера. А если взять числа 2 и 3 то равенство превратится в верное, а числа 2 и 3 будут решением уравнения. Представленные уравнения с несколькими переменными, тоже могут или не иметь корня вообще или наоборот иметь множество решений.

Правила нахождения корней

Таких правил существует несколько рассмотрим их ниже.

Пример 1

Допустим мы имеем уравнение 4 + х = 10, чтобы найти корень уравнения или значение х в данном случае необходимо найти неизвестное слагаемое, для этого есть следующее правило или формула. Для нахождения неизвестного слагаемого, нужно из суммы вычесть известное значение.

Решение:

Чтобы проверить является ли 6 решением, мы ставим его на место неизвестной переменной х в исходное уравнение, получаем следующее равенство 4 + 6 = 10, такое равенство является верным, что означает число корня уравнения, равно 6.

Пример 2

Возьмём уравнение вида х — 5 = 3, в данном примере х это неизвестное уменьшаемое, для того чтобы его найти необходимо следовать следующему правилу:

Для нахождения уменьшаемого необходимо сложить разность и вычитаемое.

Решение:

Проверяем правильность нахождения корня уравнения, подставляем, вместо переменной неизвестной, найденное число 8, получаем равенство 8 — 5 = 3, так как оно верное, то и корень уравнения найден правильно.

Пример 3

Берём уравнение, в котором неизвестное х будет вычитаемое к примеру: 8 — х = 4. для того чтобы найти х необходимо воспользоваться правилом:

Для нахождения вычитаемого, нужно из уменьшаемого вычесть разность.

Решение:

Проверяем правильность нахождения корня уравнения, для этого полученное значение ставим вместо неизвестного вычитаемого в исходный пример, и получаем следующее равенство 8 — 4 = 4, равенство верно, значит и корень найден правильно.

Уравнения с бесконечным количеством корней

В каком случае уравнение ax = b имеет единственный корень; имеет бесконечно много корней; не имеет корней? Приведите примеры.

Решение

Линейное уравнение ax = b при a ≠ 0 имеет один корень, при a = 0 и b ≠ 0, не имеет корней, при a = 0 и b = 0 имеет бесконечно много корней (любое число является его корнем).

Примеры:
15 x = 30 − один корень;
0 x = 4 − не имеет корней;
0 x = 0 − имеет бесконечно много корней.

Нашли ошибку?

Если Вы нашли ошибку, неточность или просто не согласны с ответом, пожалуйста сообщите нам об этом

1. Линейное уравнение. Приведите Примеры линейных уравнений, имеющих один корень, бесконечно много корней и не имеющих корней.

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Что ты хочешь узнать?

Ответ

Проверено экспертом

один корень имеют например

5х=6, или 10х=20, или 5х-4=1 или 9х-7=2 и т.д.

бесконечно много корней имеют например 0х=0; 2(5х+6)=10х+12, или 5х-3х-2х=7-4-3

не имеющие корни например 0х=4 или 2х+5=2х+6 и т.д.

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня – 2 , 1 и 5 , то пишем – 2 , 1 , 5 или .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.


источники:

http://www.napishem.ru/spravochnik/matematika/uravnenie-i-ego-korni.html

http://4apple.org/uravnenija-s-beskonechnym-kolichestvom-kornej/