В качестве уравнения регрессии используется

Регрессионный анализ

Методы корреляционного анализа, позволяющего решать задачи определения тесноты и направления связи, существующей между изучаемыми величинами. Регрессионный анализ представляет собой следующий этап статистического анализа и позволяет предсказать значения случайной величины на основании значений одной или нескольких независимых случайных величин. Достижение этой цели оказывается возможным за счет определения вида аналитического выражения, описывающего связь зависимой случайной величины Y (которую в этом случае называют результативным признаком) с независимыми случайными величинами Х1 ,Х2 , . Хm (которые называют факторами).

Основной задачей регрессионного анализа является установление формы линии регрессии и изучение зависимости между переменными. Основной задачей корреляционного анализа — выявление связи между случайными переменными и оценка ее тесноты.

Форма связи результативного признака Y с факторами Х1 ,Х2 , . Хm называется уравнением регрессии. В зависимости от типа выбранного уравнения различают линейную и нелинейную регрессию (например, квадратичную, логарифмическую, экспоненциальную и т. д.).

Регрессия может быть парная (простая) и множественная, что определяется числом взаимосвязанных признаков. Если исследуется связь между двумя признаками (результативным и факторным), то регрессия называется парной (простой); к этому типу относится, например, исследование зависимости между продажами и затратами на рекламу. Если исследуется связь между тремя и более признаками, то регрессия называется множественной (многофакторной) — например, если исследуется связь между уровнем потребления, доходом, финансовым состоянием и размером семьи.

На этапе регрессионного анализа решаются следующие основные задачи.

1. Выбор общего вида уравнения регрессии и определение параметров регрессии.

2. Определение в регрессии степени взаимосвязи результативного признака и факторов, проверка общего качества уравнения регрессии.

3. Проверка статистической значимости каждого коэффициента уравнения регрессии и определение их доверительных интервалов.

Простая линейная регрессия

Выбор общего вида уравнения регрессии является важной задачей, поскольку форма связи выявляет механизм получения значений зависимой случайной переменной Y. Форма связи может быть линейной или нелинейной. Линейная связь описывается линейным уравнением. Уравнение простой линейной регрессии имеет вид:

График этой функции называется линией регрессии. Линия регрессии точнее всего отражает распределение экспериментальных значений на диаграмме рассеяния, а угол ее наклона характеризует степень зависимости между двумя переменными.

Параметры уравнения регрессии могут быть определены с помощью метода наименьших квадратов (именно этот метод и используется в Microsoft Excel). При определении параметров модели методом наименьших квадратов минимизируется сумма квадратов остатков.

Для нахождения оценок параметров b0 и b1 доставляющих минимум функции Qocm, вычисляются и приравниваются к нулю частные производные этой функции, откуда система нормальных уравнении принимает следующий вид:

После простых преобразований имеем:

Тогда коэффициент наклона прямой регрессии равен:

а свободный член регрессии:

Для свободного члена последнее равенство можно переписать следующим образом:

откуда . Это означает, что средняя точка (,) совместного распределения величин X, Y всегда лежит на линии регрессии. Поэтому при замене х на х- получается b0 = , т. е. среднее заменяет

Отсюда следует, что для определения линии регрессии достаточно знать лишь ее коэффициент наклона b1. Равенство для b1. можно упростить, если использовать найденное значение выборочного коэффициента корреляции г:

где — оценки стандартных отклонений наблюдений

Из последнего выражения для b1, ясно виден общий смысл коэффициента корреляции: чем меньше г, тем ближе линия регрессии к горизонтальному положению, т. е. тем ближе будут средние значения уi,- к состоянию неизменяемости.

Для анализа общего качества уравнения линейной регрессии используется обычно коэффициент детерминации R2, который получается посредством простого возведения в квадрат коэффициента корреляции. Коэффициент детерминации показывает, в какой мере изменчивость величины Y объясняется поведением величины X. Например, если коэффициент корреляции совокупных данных, относящихся к производственным затратам, равняется 0,8, то коэффициент детерминации R2 = 0,82 = 0,64 или 64%. Это значение говорит о том, что 64% вариации (изменчивости) недельных затрат объясняется количеством изделий, выпущенных за неделю. Остальная часть (36%) вариации общих затрат объясняется другими причинами.

Так как в большинстве случаев уравнение регрессии приходится строить на основе выборочных данных, то возникает вопрос об адекватности построения уравнения данным генеральной совокупности. Для этого проводится проверка статистической значимости коэффициента детерминации R2 на основе F-критерия Фишера:

где n — число наблюдений, a m — число факторов в уравнении регрессии.

В математической статистике доказывается, что если гипотеза Н0: R2 = 0 выполняется, то величина F имеет F-распределение с k = m и l=п-ш-1 степенями свободы, т. е.

Гипотеза Н0: R2 = 0 о незначимости коэффициента детерминации R2 отвергается, если FP > Fкр, а принимается альтернативная гипотеза — о значимости R2 .При значениях считается, что вариация результативного признака Y обусловлена, в основном, влиянием включенных в регрессионную модель факторов X.

Возможна ситуация, когда часть вычисленных коэффициентов регрессии не обладает необходимой степенью значимости, т. е. значения данных коэффициентов будут меньше их стандартной ошибки. В этом случае такие коэффициенты должны быть исключены из уравнения регрессии. Поэтому проверка адекватности построенного уравнения регрессии наряду с проверкой значимости коэффициента детерминации R2 включает в себя также и проверку значимости каждого коэффициента регрессии.

Значимость коэффициентов регрессии проверяется с помощью t-критерия Стьюдента:

(10.11)

где — стандартное значение ошибки для коэффициента регрессии

В математической статистике доказывается, что если гипотеза выполняется, то величина t имеет распределение Стьюдента k = п-m

1 степенями свободы, т. е.

Гипотеза Н0: Ь1 = 0 о незначимости коэффициента регрессии отвергается, если tp│> │tкр, а принимается альтернативная о значимости Ь1. Кроме того, зная значение tкр можно найти границы доверительных интервалов для коэффициентов регрессии.

Пусть имеется корреляционное поле производства пшеницы (обозначено точками на графике) для 50-ти сельхоз предприятий. Здесь Y-годовой сбор пшеницы, X-площади посевов.

Регрессионный анализ позволяет определить аналитическое выражение для уравнения линии регрессии оценить значимость коэффициентов этого уравнения.

Задача. На рис. 2 представлены данные о суточном объеме производства и количестве занятых работников для некоторой совокупности дней. По представленным данным необходимо определить параметры уравнения линейной регрессии и выполнить его анализ.

Для расчета параметров уравнения линейной регрессии и проверки его адекватности исследуемому процессу, Microsoft Excel располагает функцией Регрессия. Для вызова этой функций необходимо выбрать команду меню Сервис→Анализ данных (Tools→Data Analysis). На экране раскроется диалоговое окно Анализ данных (Data Analysis), в котором следует выбрать значение Regression, в результате чего на экране появится диалоговое окно Regression, представленное на рис. 1

В диалоговом окне Regression задаются следующие параметры.

1. В поле Input Y Range (Входные данные У) вводится диапазон ячеек, содержащих исходные данные по результативному признаку. Диапазон должен состоять из одного столбца.

2. В поле Input X Range (Входные данные X) вводится диапазон ячеек, содержащих исходные данные факторного признака. Максимальное число входных диапазонов (столбцов) равно 16.

3. Флажок опции Labels (Метки) устанавливается в том случае, если первая строка/столбец во входном диапазоне содержит заголовок. Если заголовок отсутствует, этот флажок следует сбросить. В последнем случае для данных выходного диапазона будут автоматически созданы стандартные названия.

4. Флажок опции Confidence Level (Уровень надежности) устанавливается в том случае, если в расположенное рядом с флажком поле необходимо ввести уровень надежности, отличный от уровня 95%, применяемого по умолчанию. Установленный в данном поле уровень надежности используется для проверки значимости коэффициента детерминации и коэффициентов регрессии. Если данный флажок опции сброшен, в таблице параметров уравнения регрессии генерируются две одинаковые пары столбцов для границ доверительных интервалов.

5. Флажок опции Константа — нуль (Constant is Zero) устанавливается в том случае, когда требуется, чтобы линия регрессии прошла через начало координат (т. е. Ь0 = 0).

6. Переключатель в группе Output options (Режимы вывода) может быть установлен в одно из трех положений, определяющих, где должны быть размещены результаты расчета: Output Range (Выходной интервал), New Worksheet Ply (Новый рабочий лист) или New Workbook (Новая рабочая книга).

7. Флажок опции Residuals (Остатки) устанавливается в том случае, если в диапазон ячеек с выходными данными требуется включить столбец остатков.

8. Флажок опции Standardized Residuals (Стандартизованные остатки) устанавливается в том случае, если в диапазон ячеек с выходными данными требуется включить столбец стандартизованных остатков.

9. Флажок опции Residual Plots (График остатков) должен быть установлен, если на рабочий лист требуется вывести точечные графики зависимости остатков от факторных признаков xt.

10. Флажок опции Line Fit Plots (График подбора) должен быть установлен, если на рабочий лист требуется вывести точечные графики зависимости теоретических результативных значений у от факторных признаков х.

11. Флажок опции Normal Probability Plots (График вероятности нормального распределения) должен быть установлен, если на рабочий лист требуется вывести точечный график зависимости наблюдаемых значений у от автоматически формируемых интервалов персентелей.

Результаты решения данной задачи с помощью функции Regression представлены на рисунках 3-7.

На рисунке 3 представлены результаты расчета регрессионной статистики. Эти результаты соответствуют следующим статистическим показателям:

• Множественный R — коэффициент корреляции R;

• R-квадрат — коэффициент детерминации R2 (квадрат коэффициента корреляции);

• Нормированный R — нормированное значение коэффициента корреляции; •Стандартная ошибка — стандартное отклонение для остатков;

• Наблюдения — это число исходных наблюдений.

На рисунке 4 представлены результаты дисперсионного анализа, которые используются для проверки значимости коэффициента детерминации R2.

Значения в столбцах на рисунке. 4 имеют следующую интерпретацию.

• Столбец df — это число степеней свободы. Для строки Регрессия число степеней свободы определяется количеством факторных признаков m, для строки Остаток — числом наблюдений n и количеством переменных в уравнении регрессии m+1: п -(m + 1), а для строки Итого — суммой степеней свободы для строк Регрессия и Остаток и, следовательно, равно п — 1.

• Столбец SS — это сумма квадратов отклонений. Для строки Регрессия значение определяется как сумма квадратов отклонений теоретических данных от среднего:

Для строки Остаток это сумма квадратов отклонений эмпирических данных от теоретических:

•Для строки Итого это сумма квадратов отклонений эмпирических данных от среднего:

• Столбец MS содержит значения дисперсии, которые рассчитываются по формуле:

Для строки Регрессия это факторная дисперсия

•Для строки Остаток это остаточная дисперсия

• Столбец F содержит расчетное значение F-критерия Фишера Fp вычисляемое по формуле:

• Столбец Значимость F содержит значение уровня значимости, соответствующее вычисленному значению Fр.

На рисунке 5 представлены полученные значения коэффициентов регрессии Ь1, и их статистические оценки.

Столбцы на рисунке 5 содержат следующие значения.

• Стандартная ошибка — стандартные ошибки коэффициентов Ь1 и и b0 .

Погрешность линейного коэффициента уравнения равная 7,44 и ошибка свободного члена равная 59,5 вполне приемлемы по отношению к величинам данных коэффициентов. уравнения 23 статистически велика, так как превосходит значение свободного члена. Поэтому ошибки не должны значительно влиять на эффективность описания входных данных полученным регрессионным уравнением.

• t-статистика — расчетные значения t-критерия, вычисляемые по формуле:

.

Чем больше отличается от нуля величина t-статистики, тем статистически лучше.

• Р-значение — значения уровней значимости, соответствующие вычисленным значениям tp . Оно характеризует насколько стандартную погрешность можно считать статистически значимой

• Нижние 95% и Верхние 95% — нижние и верхние границы доверительных интервалов для коэффициентов регрессии Ь1. и b0.

На рисунке 6 представлены теоретические значения , результативного признака Y и значения остатков. Остатки вычисляются как разность между эмпирическими значениями величины у и теоретически вычисленными значениями . результативного признака Y.

Наконец, на рисунке 7 показаны вычисленные интервалы перцентилей и соответствующие им эмпирические значения у.

Перцентиль обобщает информацию о рангах, характеризуя значение, достигаемое заданным процентом общего количества данных, после того, как данные упорядочиваются (ранжируются) по возрастанию.

Перцентили — это характеристики набора данных, которые выражают ранги элементов в виде процентов от 0 до 100%, а не в виде чисел от 1 до n, таким образом, что наименьшему значению соответствует нулевой перцентиль, наибольшему — 100-й, медиане — 50-й и т. д.

Перцентили можно рассматривать как показатели, разбивающие наборы количественных и порядковых данных на определенные части. Например, 70-й перцентиль эффективности продаж может быть равен 60 тыс. руб. (измерен не в процентах, а в рублях, как и элементы набора данных). Если этот 70-й перцентиль, равный 60 тыс. руб., характеризует деятельность определенного агента по продажам (например, Александра), то это означает, что приблизительно 70% других агентов имеют результаты ниже, чем у Александра, а 40% имеют более высокие результаты.

Под рангом (R) понимают номер (порядковое место) значения случайной величины в наборе данных

Переходя к анализу полученных расчетных данных, можно построить уравнение регрессии с вычисленными коэффициентами, которое будет выражать зависимость объема производства от количества работников.

Значение множественного коэффициента детерминации R2= 0,79 (рис. 10.3) показывает, что 79% общей вариации результативного признака объясняется вариацией факторного признака X. Значит, выбранный фактор существенно влияет на объем производства, что подтверждает правильность включения его в построенную модель.

Рассчитанный уровень значимости (показатель Значимость F на рисунке 4) подтверждает значимость величины R2. Следующим этапом является проверка значимости коэффициентов регрессии Ь0 и b1, При парном сравнении коэффициентов и их стандартных ошибок (см. рисунок 5) можно сделать вывод, что вычисленные коэффициенты являются значимыми. Этот вывод подтверждается величиной Р-значения, которое меньше уровня значимости α = 0,05.

Проверка значимости коэффициента детерминации R2 и коэффициентов регрессии Ь0 и b1, при факторном признаке подтверждает адекватность полученного уравнения.

Уравнение регрессии. Уравнение множественной регрессии

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них – уравнение регрессии — рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х – независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая – зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии – это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х1 , х2 . хс)+E. В данной ситуации у выступает зависимой переменной, а х – объясняющей. Переменная Е — стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная – это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е — стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный – о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 – тем сильнее связь между параметрами, чем ближе к 0 – тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого – вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель – свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х – нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y – тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x1,x2,…,xm)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а0 + a1х1 + а2х2,+ . + amxm. При этом а2, am, считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах1 b1 х2 b2 . xm bm . В данном случае показатели b1, b2. bm – называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям – система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий – отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

Уравнение регрессии: Что это такое и как его использовать

Уравнение регрессии: Обзор

Уравнение регрессии используется в статистике для того, чтобы выяснить, какая связь, если таковая существует, существует между наборами данных. Например, если каждый год измерять рост ребенка, то можно обнаружить, что он растет примерно на 3 дюйма в год. Эта тенденция (которая растет на 3 дюйма в год) может быть смоделирована с помощью уравнения регрессии. Фактически, большинство вещей в реальном мире (от цен на газ до ураганов) можно смоделировать с помощью некоего уравнения, что позволяет нам предсказывать будущие события.

Линия регрессии – это “самая подходящая” линия для ваших данных. По сути, вы рисуете линию, которая наилучшим образом представляет точки данных. Она представляет собой среднее арифметическое того, где выравниваются все точки. В линейной регрессии линия регрессии является абсолютно прямой линией:

Линия регрессии представлена уравнением. В данном случае уравнение равно -2.2923x + 4624.4. Это означает, что если бы вы строили график уравнения -2.2923x + 4624.4, то линия была бы грубой аппроксимацией для ваших данных.

Не очень распространено, чтобы все точки данных действительно попадали на линию регрессии. На рисунке выше точки немного рассеяны вокруг линии. На следующем изображении точки падают на линию. Изогнутая форма этой линии является результатом полиномиальной регрессии, которая укладывает точки в уравнение полинома.

Уравнение регрессии: Что это такое и как его использовать

Статистические определения > Что такое уравнение регрессии?

Уравнение регрессии: Обзор

Уравнение регрессии используется в статистике для того, чтобы выяснить, какая связь, если таковая существует, существует между наборами данных. Например, если каждый год измерять рост ребенка, то можно обнаружить, что он растет примерно на 3 дюйма в год. Эта тенденция (которая растет на 3 дюйма в год) может быть смоделирована с помощью уравнения регрессии. Фактически, большинство вещей в реальном мире (от цен на газ до ураганов) можно смоделировать с помощью некоего уравнения, что позволяет нам предсказывать будущие события.

Линия регрессии – это “самая подходящая” линия для ваших данных. По сути, вы рисуете линию, которая наилучшим образом представляет точки данных. Она представляет собой среднее арифметическое того, где выравниваются все точки. В линейной регрессии линия регрессии является абсолютно прямой линией:

Линия линейной регрессии.

Линия регрессии представлена уравнением. В данном случае уравнение равно -2.2923x + 4624.4. Это означает, что если построить график уравнения -2.2923x + 4624.4, то линия будет представлять собой грубую аппроксимацию для Ваших данных.

Не очень распространено, чтобы все точки данных действительно попадали на линию регрессии. На рисунке выше точки немного рассеяны вокруг линии. На следующем изображении точки падают на линию. Изогнутая форма этой линии является результатом полиномиальной регрессии, которая укладывает точки в уравнение полинома.

В результате полиномиальной регрессии получается кривая линия.

Результатом полиномиальной регрессии является кривая линия.

Регрессия и линии прогнозирования

Регрессия полезна, так как позволяет делать прогнозы о данных. Первый график выше – с 1995 по 2015 год. Если вы хотите предсказать, что произойдет в 2020 году, вы можете поместить его в уравнение:

Отрицательное выпадение осадков не имеет особого смысла, но можно сказать, что до 2020 года осадки выпадут на 0 дюймов. Согласно этой конкретной линии регрессии, рано или поздно это произойдет в 2018 году:

Для чего нужно уравнение регрессии?

Уравнения регрессии могут помочь вам понять, подходят ли ваши данные для уравнения. Это чрезвычайно полезно, если вы хотите сделать прогноз на основе своих данных – как будущих прогнозов, так и указаний на прошлое поведение. Например, вы можете захотеть узнать, сколько ваших сбережений будет стоить в будущем. Или, возможно, вы захотите предсказать, сколько времени понадобится на выздоровление от болезни.

Существуют различные типы уравнений регрессии. К наиболее распространенным относятся экспоненциальная линейная регрессия и простая линейная регрессия (для адаптации данных к экспоненциальному уравнению или линейному уравнению). В элементарной статистике уравнение регрессии, с которым вы, скорее всего, столкнетесь, является линейной формой.

Расчет линейной регрессии

Есть несколько способов найти линию регрессии, даже вручную и с помощью технологий, таких как Excel (см. ниже). Поиск линии регрессии очень скучен вручную. Следующее видео иллюстрирует шаги:

Линию регрессии также можно найти в калькуляторах TI:

TI 83 Регрессия.

Как выполнять регрессию TI-89.

Уравнение линейной регрессии показано ниже.

Для того, чтобы данные вписались в уравнение, необходимо сначала понять, какая общая схема подходит для данных. Общие шаги для выполнения регрессии включают в себя составление дисперсионной диаграммы, а затем гипотезу о том, какой тип уравнения может быть наиболее подходящим. Затем можно выбрать наилучшее уравнение регрессии для задания.

Однако, как видно на следующем рисунке, не всегда легко выбрать подходящее уравнение регрессии, особенно при работе с реальными данными. Иногда получаются “шумные” данные, которые, кажется, не подходят ни под одно уравнение. Если большинство данных, кажется, следуют шаблону, вы можете пропустить пропуски. На самом деле, если игнорировать промахи, данные, кажется, моделируются экспоненциальным уравнением.


источники:

http://www.syl.ru/article/178055/new_uravnenie-regressii-uravnenie-mnojestvennoy-regressii

http://datascience.eu/ru/%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0-%D0%B8-%D1%81%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0/%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D1%80%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D0%B8-%D1%87%D1%82%D0%BE-%D1%8D%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D0%B8-%D0%BA%D0%B0/