В каком классе проходят уравнения и неравенства

Урок по алгебре для 8-го класса «Решение линейных неравенств с одной переменной и их систем»

Разделы: Математика

  1. Показать умение решать линейные неравенства с одной переменной и продолжить работу по решению систем линейных уравнений.
  2. Образовательный аспект. Продолжить работу по формированию у учащихся умения решать неравенства и их системы.
  3. Развивающий аспект. Развитие интереса и уважения к предмету, расширение кругозора учеников.
  4. Воспитательный аспект. Развитие самостоятельности и трудолюбия.

Оборудование. Карточки с тестами и обучающие модули для каждого ученика, мультимедийный проектор, доска.

Ход урока.

1. Организационный момент . ( 2 мин)

I. На экране задания для устной работы. (5-6 мин) Презентация (Приложение 1).

  1. Является ли число -3 решением неравенства х + 1 ≥0
  2. Решите неравенство -2а ≤ 6
    а) (+∞; 3) б) [-3; + ∞) в) [4 +∞) г) (-∞; -3]
  3. Какое наименьшее целое число является решением неравенства?
    > 1
    а) 5 б) 1 в) 2 г) 6
  4. Проверь, верно ли выполнено решение неравенства?
    -2(х+4)

    1.Является ли решением неравенства 3 – 2х > 5 число А) 4 Б) 0 В) 0,5 Г) -3

    1. Является ли решением неравенства 3х – 1 > 4 число А) 0 , Б) -0,3 В) 6 Г) 1

    2. Решите неравенство -2х 8

    А) (-∞; 1, 6) Б) (3; + ∞)
    В) (13; + ∞) Г) (-∞; — 1, 6)

    3. Решите неравенство х + 4 ≥ -1

    А) (-∞;3) Б) (-∞; -5)
    В) [ -5; + ∞) Г) (- 3; + ∞)

    3. Решите неравенство 2 + х ≤ -3

    А) (-∞; 1] Б) (-∞; -5]
    В) (5; + ∞) Г) (-1; + ∞)

    4. Решите неравенство 5х – 2(х — 4) ≤ 9х + 20

    А) (-∞; 2] Б) [ 2; + ∞) В) (-∞; -2] Г) [-2; + ∞)

    4. Решите неравенство 2х – 3(х + 4 )

    Далее проходит взаимопроверка, соседи по парте обмениваются своими тестами, а на доске высвечиваются правильные ответы. Ученики ставят оценки товарищу по парте. Учитель собирает тесты.

    III У каждого ученика на столе лежит обучающий модуль для рассмотрения более сложных систем неравенств. Те ученики, которые быстро справляются с системой, разбирают двойное неравенство.

    Краткие рекомендации по работе над учебным элементом

    Пояснения

    Работа над этим модулем позволит тебе:

    • узнать лучше о решении более сложных систем линейных неравенств
    • научиться решать двойные неравенства двумя способами

    Цель. Проверь себя насколько хорошо ты знаешь материал предыдущего урока: решение неравенств, пересечение промежутков.

    Просмотри конспект в тетради или учебник стр. 159 и 156. (2 мин)

    Цель. Работая с материалом учебника рассмотри пример 1 и пример 2 решений систем (стр. 167)

    Работай с товарищем, если затрудняешься. (3 мин)

    Цель. Рассмотри подробное решение системы на следующем примере.

    1. Раскрываем скобки в обоих неравенствах, используя распределительное свойство умножения и учитывая знаки чисел

    2. Приводим подобные слагаемые в ка ждом неравенстве

    3.Используем правило переноса слагаемых (стр.159)

    4.Производим необходимые вычисления.

    5.Ищем неизвестный множитель (при делении на положительное число знак неравенства сохраняется правило 2 стр 159; при делении на отрицательное число знак неравенства меняется правило 3)

    6. Изобразим на координатной прямой решение 1 неравенства и решение 2 неравенства. Найдем общие решения неравенств т. е. пересечение промежутков.

    Попробуй сам решить систему на выбор или а) или б)

    I

    Если затрудняешься, подними руку.

    Решение двойного неравенства

    Краткие рекомендации по работе над учебным элементом

    Работа над этим модулем позволит тебе:

    • узнать лучше о решении более сложных систем линейных неравенств
    • научиться решать двойные неравенства двумя способами

    IV. Ученики сдают тетради.

    Подведение итогов. Запись домашней работы п. 32 ,№824(б) №825(б) № 829 (а).

    Методика изучения уравнений и неравенств в средней школе

    Тема “Уравнения и неравенства” является одной из самых основных тем школьного курса математики. Она имеет большое внутрипредметное и межпредметное значение. Внутрипредметные связи: тема связана с темой “Функции” и темой “Тождественные преобразования”. Межпредметные связи: тема широко используется в физике и химии. Основная задача темы – освоить способы решения различных видов уравнений и неравенств.

    Основными понятиями темы являются:

    1. уравнение, неравенство;
    2. корень уравнения, решение неравенства;
    3. равносильность уравнений, равносильность неравенств.

    Понятие уравнение рассматривается дважды: в 5 классе, как равенство, содержащее неизвестное, (здесь понятие вводится конкретно-индуктивным методом через решение задачи, используя картинку с весами) и в 7 классе, где вводится уже точное определение уравнения: уравнение – это равенство, содержащее переменную. Здесь же вводятся понятия “корень уравнения” и “решить уравнение”. В 7 классе вводится и понятие “равносильные уравнения”, формулируются теоремы о равносильных преобразованиях. Эти теоремы формулируются в виде свойств, они не доказываются, а поясняются на примерах.

    С числовыми неравенствами 2 5 учащиеся знакомятся в начальной школе. В 5 классе вводится двойное неравенство: 1 , ?, ? называется неравенством.

    Понятие “решение неравенства” удобно вводить по аналогии с понятием “корень уравнения”.

    5x – 4 = 11

    Является ли число 3 корнем уравнения? Почему? Добиться полной формулировки ответа: число 3 является корнем уравнения, т.к. при этом значении переменной уравнение обращается в верное равенство.

    5x – 4 > 11

    Обращает ли число 4 данное неравенство в верное числовое неравенство? Да. Кто сможет дать определение, что называется решением неравенства? Решением неравенства называется значение переменной, которое обращает его в верное числовое неравенство. Далее решаются номера на усвоение.

    А можно ли указать все решения неравенства? Встает вопрос, как изобразить все решения неравенства? Учитель сообщает, что оказывается, решения неравенства изображаются на координатной прямой, а ответ записывается с помощью числовых прямых. После этого необходимо рассмотреть всевозможные случаи неравенств и их решений.

    При обучении решению любого вида уравнений и неравенств строго соблюдается методика формирования математических умений. Например, в 5 классе решаются линейные уравнения, которые содержат переменную только в одной части. Записывается на доске уравнение: 52 + (3x – 14) = 62. Что представляет собой левая часть уравнения? Сумма. Назовите слагаемые. Какое слагаемое известно? В каком из компонентов содержится неизвестное? Как найти неизвестное слагаемое? 3x – 14 = 10. Что представляет собой левая часть уравнения? Разность. В каком из компонентов содержится неизвестное? Как найти уменьшаемое? 3x = 24. Что представляет собой левая часть уравнения? Произведение. Назовите множители. Какой множитель известен? В каком из компонентов содержится неизвестное? Как найти неизвестный множитель? x = 8. Как проверить, что число 8 является корнем уравнения? 52 + (3 ? 8 – 14) = 62 ? 62 = 62. После этого составляем и записываем в тетрадь правило решения таких уравнений:

    1. определяем вид уравнения по последнему действию;
    2. определить, что неизвестно и найти неизвестное по соответствующему правилу;
    3. в случае необходимости, повторит шаги 1 – 2;
    4. найти корень уравнения;
    5. выполнить проверку;
    6. записать ответ.

    Учитель показывает образец решения на доске. После этого переходим к решению упражнений на отработку каждого шага правила.

    Методические основы решения уравнений:

    1. определяем условия, когда уравнения не имеет решения;
    2. выделяем промежуток, на котором уравнение имеет единственное решение, словесно описываем решение уравнения, вводим символическую запись решения уравнения на этом промежутке;
    3. другие решения уравнения, если они есть, выражаем через это решение и записываем все решения данного уравнения.

    Алгебра. Урок 8. Неравенства, системы неравенств.

    Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Неравенства
    • Линейные неравенства

    Неравенства

    Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:

    ≥ больше или равно,

    ≤ меньше или равно,

    то получится неравенство.

    Линейные неравенства

    Линейные неравенства – это неравенства вида:

    a x b a x ≤ b a x > b a x ≥ b

    где a и b – любые числа, причем a ≠ 0, x – переменная.

    Примеры линейных неравенств:

    3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0

    Решить линейное неравенство – получить выражение вида:

    x c x ≤ c x > c x ≥ c

    где c – некоторое число.

    Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

    • Если знак неравенства строгий > , , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой .

    Смысл выколотой точки в том, что сама точка в ответ не входит.

    • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной .

    Смысл жирной точки в том, что сама точка входит в ответ.

    • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

    Таблица числовых промежутков

    НеравенствоГрафическое решениеФорма записи ответа
    x cx ∈ ( − ∞ ; c )
    x ≤ cx ∈ ( − ∞ ; c ]
    x > cx ∈ ( c ; + ∞ )
    x ≥ c

    Алгоритм решения линейного неравенства

    1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

    a x b a x ≤ b a x > b a x ≥ b

    1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
    • Если a > 0 то неравенство приобретает вид x ≤ b a .
    • Если a 0 , то знак неравенства меняется на противоположный , неравенство приобретает вид x ≥ b a .
    1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

    Примеры решения линейных неравенств:

    №1. Решить неравенство 3 ( 2 − x ) > 18.

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    − 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

    Делим обе части неравенства на ( -3 ) – коэффициент, который стоит перед x . Так как − 3 0 , знак неравенства поменяется на противоположный . x 12 − 3 ⇒ x − 4 Остается записать ответ (см. таблицу числовых промежутков).

    Ответ: x ∈ ( − ∞ ; − 4 )

    №2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    6 x + 4 ≥ 3 x + 3 − 14

    6 x − 3 x ≥ 3 − 14 − 4

    3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на ( 3 ) – коэффициент, который стоит перед x . Так как 3 > 0, знак неравенства после деления меняться не будет.

    x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

    Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

    №1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    6 x − 6 x ≤ − 1 + 1

    Получили верное неравенство, которое не зависит от переменной x . Возникает вопрос, какие значения может принимать переменная x , чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

    Ответ:

    1. x – любое число
    2. x ∈ ( − ∞ ; + ∞ )
    3. x ∈ ℝ

    №2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    x + 6 − 9 x > − 8 x + 48

    − 8 x + 8 x > 48 − 6

    Получили неверное равенство, которое не зависит от переменной x . Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем a ≠ 0, x — переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , , точки будут выколотые.

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A ) и подставить её значение в выражение a x 2 + b x + c вместо x .

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Точки жирные, если знак неравенства нестрогий.

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Точки жирные, если знак неравенства нестрогий.

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства или ≤ в ответ выбираем интервалы со знаком -.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство x 2 ≥ x + 12.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6 . Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство 4 x 2 + 3 x .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 0

    Это значит, что знак на интервале, в котором лежит точка 2 , будет -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервалы со знаком − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство x 2 − 5 x 6.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервал со знаком -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ: x ∈ ( − 1 ; 6 )

    №5. Решить неравенство x 2 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2

    Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3 . Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства , выбираем в ответ интервал со знаком − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − 2 ; 2 )

    №6. Решить неравенство x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1 . Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

    Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

    Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

    Дробно рациональные неравенства

    Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

    f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

    Примеры дробно рациональных неравенств:

    x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

    Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

    Алгоритм решения дробно рациональных неравенств:

    1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

    f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    1. Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя .
    1. Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя .

    В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

    1. Нанести нули числителя и нули знаменателя на ось x .

    Вне зависимости от знака неравенства
    при нанесении на ось x нули знаменателя всегда выколотые .

    Если знак неравенства строгий ,
    при нанесении на ось x нули числителя выколотые .

    Если знак неравенства нестрогий ,
    при нанесении на ось x нули числителя жирные .

    1. Расставить знаки на интервалах.
    1. Выбрать подходящие интервалы и записать ответ.

    Примеры решения дробно рациональных неравенств:

    №1. Решить неравенство x − 1 x + 3 > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
    1. Приравниваем числитель к нулю f ( x ) = 0.

    x = 1 — это ноль числителя . Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

    1. Приравниваем знаменатель к нулю g ( x ) = 0.

    x = − 3 — это ноль знаменателя . При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства) .

    1. Наносим нули числителя и нули знаменателя на ось x .

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,

    Это значит, что знак на интервале, в котором лежит точка 2 будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

    В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

    Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

    №2. Решить неравенство 3 ( x + 8 ) ≤ 5.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Привести неравенство к виду f ( x ) g ( x ) ≤ 0.

    3 ( x + 8 ) − 5 \ x + 8 ≤ 0

    3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 x − 40 x + 8 ≤ 0

    − 5 x − 37 x + 8 ≤ 0

    1. Приравнять числитель к нулю f ( x ) = 0.

    x = − 37 5 = − 37 5 = − 7,4

    x = − 7,4 — ноль числителя . Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = − 8 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x .

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

    − 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.

    В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

    Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

    №3. Решить неравенство x 2 − 1 x > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
    1. Приравнять числитель к нулю f ( x ) = 0.

    ( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

    x 1 = 1, x 2 = − 1 — нули числителя . Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = 0 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x .

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

    x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

    В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

    Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

    Системы неравенств

    Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

    Пример системы неравенств:

    Алгоритм решения системы неравенств

    1. Решить первое неравенство системы, изобразить его графически на оси x .
    1. Решить второе неравенство системы, изобразить его графически на оси x .
    1. Нанести решения первого и второго неравенств на ось x .
    1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

    Примеры решений систем неравенств:

    №1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

    Точка 4 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    − 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.

    Графическая интерпретация решения:

    Точка 2 на графике жирная, так как знак неравенства нестрогий.

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на отрезке от 2 до 4 . Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

    №2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

    Точка 3 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    3 x − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.

    Графическая интерпретация решения:

    Точка -1 на графике выколотая, так как знак неравенства строгий.

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

    Ответ: x ∈ ( − ∞ ; − 1 )

    №3. Решить систему неравенств < 3 x + 1 ≤ 2 x x − 7 >5 − x

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    Графическая интерпретация решения:

    1. Решаем второе неравенство системы

    2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

    Графическая интерпретация решения:

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

    №4. Решить систему неравенств < x + 4 >0 2 x + 3 ≤ x 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    Графическая интерпретация решения первого неравенства:

    1. Решаем второе неравенство системы

    Решаем методом интервалов.

    a = − 1, b = 2, c = 3

    D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

    D > 0 — два различных действительных корня.

    x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

    Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

    Графическая интерпретация решения второго неравенства:

    1. Наносим оба решения на ось x .
    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .

    Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.


    источники:

    http://neudov.net/4students/otvety-po-tmom/metodika-izucheniya-uravnenij-i-neravenstv-v-srednej-shkole/

    http://epmat.ru/modul-algebra/urok-8-neravenstva-sistemy-neravenstv/