Вектор скорости частицы задается уравнением

Скорость, Вектор скорости и траектория, Сложение скоростей

Скорость

Средняя скорость частицы характеризует быстроту ее движения за конечный промежуток времени. Неограниченно уменьшая этот промежуток, мы придем к физической величине, характеризующей быстроту движения в данный момент времени. Такая величина называется мгновенной скоростью или просто скоростью:

обозначает математическую операцию перехода к пределу. Под этим символом записывается условие, при котором выполняется данный предельный переход; в рассматриваемом случае это стремление к нулю промежутка времени. При вычислении скорости по этому правилу мы убедимся, что уменьшение промежутка времени приводит к тому, что на некотором этапе получаемые очередные значения средней скорости будут все меньше и меньше отличаться друг от друга. Поэтому на практике при нахождении скорости можно остановиться на конечном значении, достаточно малом для получения требуемой точности значения скорости.

Вектор скорости и траектория.

Рассматриваемый предельный переход имеет ясный геометрический смысл. Поскольку вектор перемещения направлен по хорде, соединяющей две точки траектории, то при сближении этих точек, происходящем при, он принимает положение, соответствующее касательной к траектории в данной точке. Это значит, что вектор скорости направлен по касательной к траектории. Так будет в любой точке траектории (рис. 14). При прямолинейной траектории движения вектор скорости направлен вдоль этой прямой.

Скорость прохождения пути.

Аналогичным переходом определяется мгновенная скорость прохождения пути:

Для плавной кривой, каковой является траектория любого непрерывного механического движения, длина дуги тем меньше отличается от длины стягивающей ее хорды, чем короче эта дуга. В пределе эти длины совпадают. Поэтому при можно считать, что . Это означает, что скорость прохождения пути равна модулю мгновенной скорости . Движение, при котором модуль скорости остается неизменным, называется равномерным. В случае прямолинейной траектории при равномерном движении вектор скорости постоянен, а в случае криволинейной траектории изменяется только его направление.

Сложение скоростей.

Если тело одновременно участвует в нескольких движениях, то его скорость равна векторной сумме скоростей каждого из этих движений. Это непосредственно следует из правила сложения перемещений: так как , то после деления на получаем

Иногда бывает удобно представить некоторое сложное движение как суперпозицию, т. е. наложение двух простых движений. В этом случае равенство (3) можно трактовать как правило разложения вектора скорости на составляющие.

По этой ссылке вы найдёте полный курс лекций по математике:

Задачи.

1.

Переправа через реку. Скорость течения в реке с параллельными берегами всюду одинакова и равна. Ширина реки (рис. 15). Катер может плыть со скоростью относительно воды. На какое расстояние s снесет катер вниз по течению реки, если при переправе нос катера направить строго поперек берегов?

Катер участвует одновременно в двух движениях: со скоростью , направленной поперек течения, и вместе с водой со скоростью которая направлена параллельно берегу. В соответствии с правилом сложения скоростей полная скорость катера относительно берегов равна векторной сумме (рис. 16). Очевидно, что движение катера происходит по прямой, направленной вдоль вектора. Искомое расстояние s, на которое снесет катер при переправе, можно найти из подобия треугольника, образованному векторами скоростей:

Эту задачу легко решить и не прибегая к сложению векторов скоростей.

Очевидно, что расстояние s равно произведению скорости течения на время в течение которого катер пересекает реку. Это время можно найти, разделив ширину реки на скорость движения катера поперек реки. Таким образом, находим Рис. 16. Сложение скоростей при переправе через .В этой простой задаче второй способ решения предпочтительнее, так как он проще. Однако уже при небольшом усложнении условия задачи становятся отчетливо видны преимущества первого способа, основанного на сложении векторов скоростей.

2. Переправа поперек реки. Предположим, что теперь нам нужно переправиться на катере через ту же реку точно поперек, т. е. попасть в точку В, лежащую напротив начальной точки А (рис. 17). Как нужно направить нос катера при переправе? Сколько времени займет такая переправа?Решение. В рассматриваемом случае полная скорость v катера относительно берегов, равная векторной сумме скоростей должна быть направлена поперек реки.

Из рис. 17 сразу видно, что вектор, вдоль которого и смотрит нос катера, должен отклоняться на некоторый угол а вверх по течению реки от направления . Синус этого угла равен отношению модулей скоростей течения и катера относительно воды. Переправа поперек реки без сноса возможна только в том случае, когда скорость катера относительно воды больше скорости течения. Это сразу видно либо из треугольника скоростей на рис. 17 (гипотенуза всегда больше катета), либо из формулы (синус угла а должен быть меньше единицы).Время переправы найдем, разделив ширину реки на полную скорость катера по теореме Пифагора.

Возможно вам будут полезны данные страницы:

3. Снос при быстром течении.

Предположим теперь, что скорость катера относительно воды меньше скорости течения: В таком случае переправа без сноса невозможна. Как следует направить нос катера при переправе, чтобы снос получился минимальным? На какое расстояние этом снесет катер? Решение. Полная скорость относительно берегов во всех рассматриваемых случаях дается формулой. Однако теперь нагляднее выполнить сложение векторов и по правилу треугольника (рис. 18) первым изображаем век гор для которого мы знаем модуль направление, а затем к его концу пристраиваем начало вектора известен только модуль, направление еще предстоит выбрать. Этот выбор нужно сделать так, вектор результирующей скорости как можно меньше отклонялся от направления поперек реки.

Рис. 19. Определение курса (направление вектора) переправы минимальным сносом 18. Сложение скоростей переправе Конец любом направлении должен лежать на окружности радиуса центр которой совпадает концом вектора. Эта окружность показана Так условию задачи то точка соответствующая началу лежит вне этой окружности.

Из рисунка видно, что образует прямой

наименьший угол тогда, когда он направлен касательной Следовательно, перпендикулярен вектору треугольник прямоугольный. Таким образом, направлять вверх течению под углом линии Синус этого угла дастся выражением Траектория направлена вдоль вектора, т.е. она перпендикулярна направлению, в котором смотрит катера. Это значит, своей траектории катер движется боком. другом берегу реки причалит точке, до найти из подобия треугольников. Модуль находится теореме Пифагора. результате получаем

4. Лодка тросе. Лодку подтягивают за привязанный носу трос, наматывая равномерно вращающийся барабан Барабан установлен высоком берегу. какой скоростью лодка тот момент, трос горизонтом? Трос выбирается барабаном скоростью.

Решение.

Точка троса, где он привязан к лодке, движется с той же скоростью, что и лодка. Эта скорость v направлена горизонтально. Чтобы связать ее со скоростью выбирания троса, нужно сообразить, что движение троса сводится к повороту вокруг точки В, где он касается барабана, и скольжению вдоль собственного направления, т. е. прямой . Поэтому естественно разложить скорость точки на две составляющие , направленные вдоль и поперек троса (рис. 21). Скорость , направленная поперек, связана с поворотом троса. Модуль скорости направленной вдоль троса, — это и есть данное в условии задачи значение скорости.

По мере приближения лодки к берегу угол а становится больше. Это значит, что cos а убывает и искомая скорость возрастает. Задача для самостоятельного решения Человек находится в поле на расстоянии от прямолинейного участка шоссе. Слева от себя он замечает движущийся по шоссе автомобиль. В каком направлении следует бежать к шоссе, чтобы выбежать на дорогу впереди автомобиля и как можно дальше от него? Скорость автомобиля и, скорость человека.

• Объясните, почему вектор скорости всегда направлен по касательной к траектории.

• В некоторых случаях траектория движения частицы может иметь изломы. Приведите примеры таких движений. Что можно сказать о направлении скорости в точках, где траектория имеет излом?

• В случае непрерывного механического движения вектор скорости не испытывает скачков ни по модулю, ни по направлению. Появление скачков скорости всегда связано с некоторой идеализацией реального процесса. Какие идеализации присутствовали в приведенных вами примерах траекторий с изломами?

• Найдите ошибку в приводимом ниже решении задачи 4. Разложим скорость , точки троса на вертикальную и горизонтальную составляющие (рис. 22). Горизонтальная составляющая это и есть искомая скорость лодки. Поэтому и (неверно!).

Скорость как производная.

Вернемся к выражению (1) для мгновенной скорости. При движении частицы ее радиус-вектор г изменяется, т. е. является некоторой функцией времени:. Перемещение Дг за промежуток времени At представляет собой разность радиусов-векторов в моменты времени. Поэтому формулу (1) можно переписать в виде В математике такую величину называют производной от функции по времени Для нее используют следующие обозначения. Последнее обозначение (точка над буквой) характерно именно для производной по времени. Отметим, что в данном случае производная представляет собой вектор, так как получается в результате дифференцирования векторной функции по скалярному аргументу. Для модуля мгновенной скорости в соответствии справедливо выражение в начале статьи.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Как рассчитать мгновенную скорость, формулу мгновенной скорости

Мгновенная скорость сообщает нам о движении частицы в определенный момент времени в любом месте на ее пути.

Мгновенная скорость принимается за предел средней скорости при стремлении времени к нулю. Вычислять Vинст мы можем использовать график смещения-времени / формулу мгновенной скорости. т.е. производная смещения (s) по времени (t), взятая.

Чтобы узнать, как рассчитать мгновенную скорость объекта, нам нужно выполнить следующие действия. . Давайте посмотрим на это на примере.

Рассмотрим уравнение скорости в терминах положения / смещения.

Вычислять мгновенная скорость, мы должны рассмотреть уравнение это говорит нам о его должность ‘s’ в определенный время ‘t’. Это означает, что уравнение должно содержать переменную ‘s‘с одной стороны и’t‘ с другой стороны,

s = -2т 2 + 10т +5 при t = 2 секунды.

В этом уравнении переменными являются:

Смещение = s, измеряется в метрах.

Время = t, измеряется в секундах.

Рассмотрим производную данного уравнения.

Чтобы найти производную данного уравнения перемещения, дифференцировать функцию по времени,

ds / dt = — (2) 2т (2-1) + (1) 10 т 1 – 1 + (0) 5 т 0

ds / dt = -4т 1 + 10т 0

ds / dt = -4t + 10

Подставьте данное значение «t» в уравнение производной, чтобы найти мгновенную скорость.

Найдите мгновенная скорость при t = 2 подставить «2» для t в производной ds / dt = -4t + 10. Тогда мы можем решить уравнение

ds / dt = -4 (2) + 10

ds / dt = -8 + 10

ds / dt = -2 метра в секунду

Здесь «метры / секунда» — это единица измерения мгновенной скорости в системе СИ.

Как рассчитать Instantaneo скорость нас из графика

Мгновенная скорость в любой конкретный момент времени определяется наклоном касательной, проведенной к графику положения-времени в этой точке.

  • Постройте график расстояние против времени.
  • Отметьте точку, в которой вам нужно найти мгновенную скорость, скажем A.
  • Определите точку на графике, соответствующую времени t1 и t2.
  • Вычислить vсредний и проведем касательную в точке A.
  • На графике vинст в точке A находится по касательной, проведенной в этой точке
  • Чем длиннее тангенс, тем точнее будут значения.
  • На показанном изображении Синяя линия это график зависимости положения от времени, А Красная линия — приблизительный наклон линии при t = 2.5 секунды.
  • Если мы продолжаем выбирать точки, которые все ближе и ближе друг к другу, линия начнет приближаться к наклону линии, касательной к одной точке.
  • Если мы возьмем предел функции в этой точке, мы получим значение наклона касательной в этой точке.
  • Расстояние составляет примерно 140 м, а временной интервал — 4.3 с. Следовательно, приблизительный уклон составляет 32.55 м / с.

Как рассчитать мгновенную скорость по графику положения-времени.

Для вычисления мгновенной скорости по графику положения-времени.

Постройте график зависимости смещения от времени.

  • Используйте оси X и Y для представления время и перемещение.
  • Затем нанесите на график значения времени и смещения.

Выберите любые две точки на графике st.

  • Линия смещения содержит точки (3,6) и (5,8).
  • В этом примере, если мы хотим найти наклон в точке (3,6), мы можем установить А = (3,6) и B=(5,8)

Найдите наклон линии, соединяющей две точки, т. Е. Между точками A и B.

Найдите среднюю скорость между этими двумя временными интервалами, т. Е.

где K — наклон между двумя точками.

Здесь наклон между A и B равен:

Повторите несколько раз, чтобы найти уклон, перемещая B ближе к A.

  • Продолжайте выбирать точки ближе друг к другу; затем он начнет приближаться к наклону касательной.
  • Если мы рассмотрим предел функции в этой точке, мы получим значение наклона в этой точке.
  • Здесь мы можем использовать точки (4,7.7), (3.5, 6.90) и (3.25, 6.49) для B и исходную точку (3,6) для A.

Вычислите наклон для бесконечно малого отрезка касательной.

В этом примере, когда мы приближаем B к A, мы получаем значения 1.7, 1.8 и 1.96 для K. Поскольку эти числа примерно равны 2, можно сказать, что 2 — наклон А.

Здесь, мгновенная скорость 2 м / с.

Формула мгновенной скорости

С математической точки зрения мы можем написать формула мгновенной скорости в виде,

Здесь, ds / dt — это производная смещения (с) по времени (t).

Приведенные выше производная имеет конечное значение когда и знаменатель, и числитель стремятся к нулю.

Расчет формулы мгновенной скорости

Используя вычисления, всегда можно вычислить скорость объекта в любой момент на его пути. Это называется мгновенной скоростью. и задается уравнением v = ds / dt .

Мгновенная скорость = предел, поскольку изменение во времени приближается к нулю (изменение положения / изменение во времени) = производная смещения по времени

Формула средней и мгновенной скорости

Формула Символ Определение
Средняя скоростьsf = Окончательный смещение

si = Начальное смещение

tf = Последний раз


ti = Начальное время

Средняя скорость is общее расстояние
деленное на общее затраченное время.
Мгновенная скоростьСкорость при любом момент времени.

Формула мгновенной угловой скорости

мгновенная угловая скорость скорость, с которой частица движется по круговой траектории в определенный момент времени.

мгновенная угловая скорость вращающегося объекта определяется выражением

dθ/dt = производная углового положения θ по времени, найденное предельным переходом Δ t → 0 в средняя угловая скорость.

направление угловой скорости на круговой траектории — вдоль оси вращения и указывает от вас на вращающееся тело по часовой стрелке и к вам для тела, вращающегося против часовой стрелки. В математике это обычно описывается правило правой руки.

Формула мгновенной скорости и скорости

Формула мгновенной скорости

Формула мгновенной скорости

Разница между мгновенной скоростью и мгновенной скоростью.

Мгновенная скорость Мгновенная скорость
Это скорость движущейся частицы в определенный момент t.Вход в музей Мадам Тюссо мера скорости частицы в определенный момент t.
Мгновенная скорость определяет, насколько быстро и в каком направлении движется объект.Мгновенная скорость измеряет, насколько быстро частица движется.
Количество векторов Скалярная величина

Определение и формула мгновенной скорости

Определение мгновенной скорости

Мгновенная скорость описывается как скорость движущегося объекта. Мы можем найти его, используя среднюю скорость, но мы должны сузить время, чтобы приблизиться к нулю.

Итого можно сказать, что мгновенная скорость — это скорость движущейся частицы в определенный момент времени.

Формула мгновенной скорости

Для любого уравнения движения s(t), для мгновенная скорость когда t приближается к нулю, мы можем записать формула в виде,

Мгновенная скорость формула предела

Мгновенная скорость любого объекта — это предел средней скорости, когда время приближается к нулю..

Вставьте значения t1= t и t2 = t + Δt в уравнение для средней скорости и переходя к пределу при Δt → 0, находим формула предела мгновенной скорости

Как найти мгновенную скорость на графике

Мгновенная скорость равна наклону касательной на графике положение-время.

Мгновенно s Интерпретация скорости из графика st

  • Мгновенная скорость равна наклону касательной на графике положение-время.
  • Интерпретация мгновенной скорости по графику st
  • Наклон фиолетовой линии (касательной) на графике смещения v / s дает мгновенную скорость.
  • Если фиолетовая линия образует угол с положительной осью абсцисс.

Vinst = наклон фиолетовой линии = tanθ

Как найти мгновенную скорость из средней скорости

Для того, чтобы найти мгновенная скорость в точке, мы должны сначала найти среднюю скорость в этой точке.

Вы можете найти мгновенную скорость при t = a с помощью вычисление средней скорости графика зависимости положения от времени путем взятия меньшего и большего приращения точки, в которой вы хотите определить V inst .

Пример мгновенной скорости

Во время езды на велосипеде велосипедист меняет свою скорость в зависимости от расстояния и времени, которое он проходит.

Если мы хотим найти скорость в одной конкретной точке, мы должны использовать мгновенную скорость.

Покажи нам пример,

а). Определить мгновенную скорость частицы, движущейся по прямому пути за t = 2 секунды, с функцией положения «s», определенной как 4t² + 2t + 3?

Решение:

Данный с = 4т² + 2т + 3

Дифференцируя данную функцию по времени, мы вычисляем мгновенную скорость следующим образом:

Подставляя значение t = 2, мы получаем мгновенную скорость как,

Подставляя функцию s,

Таким образом, мгновенная скорость для вышеуказанной функции составляет 18 м / с.

Проблема мгновенной скорости

Некоторые проблемы с мгновенной скоростью,

Проблема 1:

Движение тележки задается функцией s = 3t 2 + 10t + 5. Вычислите его мгновенную скорость в момент времени t = 4 с.

Решение:

Данная функция s = 3t 2 + 10т + 5.

Продифференцируя указанную выше функцию по времени, получим

Подставляя функцию s,

[v_ = v (t) = 6t + 10]

Подставляя значение t = 4 с, мы получаем мгновенную скорость как,

Для данной функции мгновенная скорость составляет 34 м / с.

Проблема 2:

Выстреленная пуля движется по прямой траектории, и ее уравнение движения имеет вид S (t) = 3t + 5t. 2 . Так, например, если он летит за 12 секунд до удара, найдите мгновенную скорость при t = 7 с.

Решение: Мы знаем уравнение движения:

Проблема 3:

Объект выпускается с определенной высоты, чтобы он мог свободно падать под действием силы тяжести. Уравнение движения для перемещения s (t) = 5.1 т. 2 . Какой будет мгновенная скорость объекта в момент времени t = 6 с после выпуска?

Решение:

Мгновенная скорость при t = 6 с

Проблема 4:

Найдите скорость при t = 2, учитывая уравнение перемещения s = 3t 3 — 3т 2 + 2т + 7.

Решение:

Это похоже на предыдущие задачи, за исключением того, что они дали кубическое уравнение вместо квадратного уравнения, чтобы решить его таким же образом.

s (t) = 3t 3 — 3т 2 + 2т + 7.

Мгновенная скорость при t = 7 с

Проблема 5:

Положение человека, движущегося по прямой, определяется выражением s (t) = 7t. 2 + 3t + 19, где t — время (секунды). Найдите уравнение для мгновенной скорости v (t) частицы в момент времени t.

Решение:

Дано: s (t) = 7t 2 + 3т + 19

vинст = v (t) = (14t + 3) м / с — уравнение для мгновенной скорости.

Предположим, что если принять t = 3s, то

Проблема 6:

Движение автомобиля описывается уравнением движения s = gt 2 + b, где b = 20 м и g = 12 м. Следовательно, найдите мгновенную скорость при t = 4 с.

Решение:

Здесь g = 12 и t = 4s,

v (4) = [2 x 12 x 4] = 96 м / с.

v (т) = 96 м / с.

Проблема 7:

Стол, упавший со здания 1145 футов, имеет высоту (в футах) над землей, определяемую как s (t) = 1145-12 т. 2 . Затем вычислите мгновенную скорость стола на 3 с?

Решение:

Мгновенная скорость при t = 3 с составляет -72 м / с.

Проблема 8:

Функция положения частиц определяется выражением s = (3t 2 )i — (4т)k + 2. какова его мгновенная скорость при t = 2? Каково его мгновенное ускорение как функция времени?

Решение:

Чтобы вычислить мгновенное ускорение как функцию времени

дифференцируя уравнение 1 по t, получаем

Проблема 9:

Положение насекомого определяется как s = 44 + 20t — 3t. 3 , где t в секундах, а s в метрах .

а. Найдите среднюю скорость объекта между t = 0 и t = 4. s.

б. В какое время между 0 и 4 мгновенная скорость равна нулю.

решение:

Для расчета средней скорости

Чтобы найти время, при котором мгновенная скорость равна нулю.

Проблема 10:

Частица движется с функцией смещения s = t 2 + 3 .

Найдите положение при t = 2.

Найдите среднюю скорость от t = 2 до t = 3.

Найти его мгновенную скорость при t = 2 .

Решение:

Чтобы найти позицию при t = 2

с (2) = 7

Для того, чтобы найти Средняя скорость.

Чтобы найти мгновенную скорость

При t = 2 с

Мгновенная скорость в зависимости от средней скорости

Мгновенная скорость Средняя скорость
мгновенная скорость — средняя скорость между двумя точками.Средняя скорость это соотношение изменения дистасть относительно времени за период.
Мгновенная скорость рассказывает о движении между двумя точками на пройденном пути.Средняя скорость не дает информации о движении между точками. Путь может быть прямым / изогнутым, а движение может быть постоянным / переменным.
Мгновенная скорость равен наклону касательной к смещение (с) в зависимости от графика времени.Он равен наклону секущая линия of граф st.
вектор вектор

Как найти мгновенная скорость без исчисления

Wмы можем найти мгновенную скорость приближением по график зависимости смещения от времени без исчисления в определенной точке. Нам нужно провести касательную в точке вдоль изогнутой линии и оценить наклон, где вам нужно найти мгновенную скорость.

Как рассчитать мгновенную скорость и мгновенное ускорение

Мгновенная скоростьМгновенное ускорение
Из формулыДля расчета мгновенной скорости, возьмем предел изменения расстояния по времени, когда время приближается к нулю. т. е. взяв первая производная функции смещения.к рассчитать мгновенное ускорение, принять предел изменения скорости по времени, когда изменение во времени приближается к нулю. т.е. взяв вторая производная функции смещения.
Из графикаРавно наклон касательной к графику st.Равно наклон касательной графика vt.

11 задачи:

Пуля, выпущенная в космос, движется по прямой траектории, и ее уравнение движения имеет вид s (t) = 2t + 4t 2 . Если он движется в течение 12 секунд до удара, найдите мгновенную скорость и мгновенное ускорение в момент времени t = 3 секунды.

Решение: Мы знаем уравнение движения: s (t) = 2t + 4t 2

Как найти мгновенную скорость и скорость

Мгновенная скорость задается как величина мгновенной скорости.

Если известно смещение как функция времени, мы можем узнать мгновенную скорость в любое время.

Давайте разберемся в этом на примере.

12 задачи:

Уравнение движения s (t) = 3t 3

Рассмотрим t = 2s

Почему можно рассчитать мгновенную скорость по кинематическим формулам только при постоянном ускорении

Уравнения кинематики можно использовать только при постоянном ускорении объекта.

В случае переменные ускорения, Уравнения кинематики будут разными в зависимости от функции, которую принимает ускорение; в то время; мы должны использовать Комплексный подход вычислять мгновенная скорость. Что будет немного сложно.

Почему при вычислении мгновенной скорости мы берем небольшие промежутки времени. Как он дает скорость в этот момент, если мы рассчитываем ее за определенный промежуток времени?

мгновенная скорость дан кем-то ,

Чем меньше значение «t», Тем точнее будет наклон касательной, т. е. мгновенная скорость.

Когда ты хочешь рассчитать скорость в определенное время вам нужно сначала рассчитать средние скорости взяв небольшие промежутки времени. Если эти средние скорости дают одно и то же значение, тогда это будет требуемый мгновенная скорость.

Различаются ли скорость и мгновенная скорость?

Мгновенная скорость отличается от скорости.

Скорость обычно известен как скорость изменения положения во времени. Напротив, в мгновенная скорость, временной интервал сужается, чтобы приблизиться к нулю, чтобы получить скорость в конкретный момент времени.

Например,

Частица движение по кругу имеет нулевые смещения, и требуется знать скорость частицы. В этом случае мы можем вычислить мгновенную скорость, потому что она имеет тангенциальная скорость в любой момент времени.

Что такое мгновенная скорость на реальных примерах

Реальные примеры мгновенной скорости

Если мы рассмотрим пример мяча для сквоша, мяч возвращается в исходную точку; в это время полное смещение и средняя скорость будут равны нулю. В таких случаях движение рассчитывается по формуле мгновенная скорость.

  • Спидометр автомобиля дает информацию о мгновенная скорость / скорость средство передвижения. Он показывает скорость в определенный момент времени.
    Во время гонки фотографы делают снимки бегунов, их средняя скорость не меняется, но меняется их мгновенная скорость, зафиксированная на «снимках». Так что это будет пример мгновенной скорости.
  • Если вы находитесь рядом с магазином, и перед вами проехал автомобиль на отметке «t«Во-вторых, и вы начинаете думать о его скорости на конкретном время, здесь вы имели бы в виду мгновенная скорость транспортного средства.

Часто задаваемые вопросы | FAQs

Является ли мгновенная скорость вектором

Мгновенная скорость — это векторная величина.

Мгновенная скорость — это вектор, потому что он имеет как величину, так и направление. Он показывает как скорость (относится к величине), так и направление. участникале Имеет размер LT -1 Мы можем определить это, взяв наклон графика расстояние-время..

Как найти мгновенную скорость только с графиком положения и времени и без заданного уравнения

Мы можем определить мгновенную скорость, взяв наклон графика положения-времени.

  • Постройте график смещения во времени.
  • Выберите точку A и другую точку B, которая находится рядом с точкой A на линии.
  • Найдите угол наклона между A и B, рассчитайте несколько раз, перемещая A ближе к B.
  • Рассчитайте наклон для бесконечно малого интервала на прямой.
  • Полученный наклон представляет собой мгновенную скорость.

Можно ли мгновенно изменить скорость

Невозможно вызвать мгновенное изменение скорости, так как для этого потребуется бесконечное ускорение.

Как правило, ускорение является результатом F = ma

а скорость является результатом ускорения (от интегрирования). Если изменение скорости является ступенчатой ​​функцией и когда время приближается к нулю, потребуется бесконечное ускорение и сила, чтобы мгновенно изменить скорость массы.

Как я могу рассчитать смещение, если ускорение является функцией мгновенной скорости Задана начальная скорость

Мы можем вычислить смещение двумя способами, когда задана начальная скорость.

От происхождения

Здесь ускорение является функцией мгновенной скорости,

Начальная скорость

Интегрируя,

Используя эту форму, вы можете получить ds смещения.

Из формулы

Используя приведенное ниже кинематическое уравнение, мы можем найти смещение,

Что такое средний и мгновенная скорость

Средняя скорость и мгновенная скорость выражаются следующим образом:

Средняя скоростьМгновенная скорость
Средняя скорость для определенного временного интервала — это полное смещение, деленное на общее время.И временной интервал, и смещение в какой-то момент приближаются к нулю. Но предел производной смещения по общему интервалу времени отличен от нуля и называется мгновенной скоростью.
Средняя скорость это скорость всего пути в движенииа мгновенная скорость скорость частицы в определенный момент времени
v avg = s/tv inst = ds/dt

Мгновенное ускорение перпендикулярно мгновенной скорости

Мгновенное ускорение тела всегда перпендикулярно мгновенной скорости.

При круговом движении мгновенное ускорение тела всегда перпендикулярно мгновенной скорости, и это ускорение называется центростремительным ускорением. Скорость остается неизменной; только направление меняется, поскольку перпендикулярное ускорение изменяет траекторию тела.

Последние выпуски передовой науки и исследований


источники:

http://artsybashev.ru/zadachki-s-resheniem/vektor-skorosti-i-uskoreniya-materialnoi-tochki/

http://ru.lambdageeks.com/how-to-calculate-instantaneous-velocity-formula/