Векторный оператор в уравнении эйлера

Матрицы поворота, углы Эйлера и кватернионы (Rotation matrices, Euler angles and quaternions)

Объект обычно определяется в удобной для его описания локальной системе координат (ЛСК), а его положение в пространстве — в глобальной системе координат (ГСК).

В трёхмерном пространстве переход из одной СК в другую описывается в общем случае системой линейных уравнений:

Уравнения могут быть записаны через матрицы аффинных преобразований в однородных координатах одним из 2-х способов:

В ортогональных СК оси X, Y и Z взаимно перпендикулярны и расположены по правилу правой руки:

На рисунке справа большой палец определяет направление оси, остальные пальцы — положительное направление вращения относительно этой оси.

Все три вектора направлений есть единичными.

Ниже приводится единичная матрица для 2-х способов записи уравнений геометрических преобразований. Такая матрица не описывает ни перемещения, ни вращения. Оси ЛСК и ГСК совпадают.

Далее рассматривается матрица для второго способа матричной записи уравнений (матрица справа). Этот способ встречается в статьях значительно чаще.

При использовании матрицы вы можете игнорировать нижнюю строку. В ней всегда хранятся одни и те же значения 0, 0, 0, 1. Она добавлена для того, чтобы мы могли перемножать матрицы (напомню правило перемножения матриц и отмечу, что всегда можно перемножать квадратные матрицы). Подробнее см. Композиция матриц. Однородные координаты.

Остальные 12 значений определяют координатную систему. Первый столбец описывает компоненты направления оси X(1,0,0). Второй столбец задает направление оси Y(0,1,0), третий – оси Z (0,0,1). Последний столбец определяет положение начала системы координат (0,0,0).

Как будет выглядеть матрица Евклидового преобразования (преобразование движения) для задания ЛСК , с началом в точке (10,5,0) и повёрнутой на 45° вокруг оси Z глобальной СК, показано на рисунке.

Рассмотрим сначала ось X. Если новая система координат повернута на 45° вокруг оси z, значит и ось x повернута относительно базовой оси X на 45° в положительном направлении отсчета углов. Таким образом, ось X направлена вдоль вектора (1, 1, 0), но поскольку вектор системы координат должен быть единичным, то результат должен выглядеть так (0.707, 0.707, 0). Соответственно, ось Y имеет отрицательную компоненту по X и положительную по Y и будет выглядеть следующим образом (-0.707, 0.707, 0). Ось Z направления не меняет (0, 0, 1). Наконец, в четвертом столбце вписываются координаты точки начала системы координат (10, 5, 0).

Частным случаем матриц геометрических преобразований есть матрицы поворота ЛСК относительно базовых осей ГСК. Вектора осей ЛСК здесь выражены через синусы и косинусы углов вращения относительно оси, перпендикулярной к плоскости вращения.

От матрицы преобразований размером 4*4 можно перейти непосредственно к матрице поворота 3*3, убрав нижний ряд и правый столбец. При этом, система линейных уравнений записывается без свободных элементов (лямда, мю, ню), которые определяют перемещение вдоль осей координат.

Путем перемножения базовых матриц можно получать комбинированные вращения. Ниже рассмотрены возможности комбинировать вращениями через матрицы поворота на примерах работы с углами Эйлера.

Матрицы поворота и углы Эйлера

От выбора осей и последовательности вращения зависит конечный результат. На рисунках отображена следующая последовательность вращения относительно осей ЛСК:

  • оси Z (угол alpha);
  • оси X (угол beta);
  • оси Z (угол gamma).

Получил от читателя этой статьи вопрос: «Как понять, из каких углов поворота вокруг осей X,Y,Z можно получить текущее положение объекта, когда в качестве задания мы уже имеем повернутый объект, а нужно вывести его в это положение, последовательно повернув его из какого-то начального положения до полного совмещения с заданным?»

Мой ответ: «Если я правильно понял вопрос, то Вас интересует, как от начального положения перейти к заданному положению объекта, используя для этого элементарные базовые аффинные преобразования.

Начну с аналогии. Это как в шахматах. Мы знаем как ходит конь. Необходимо переместить его в результате многоходовки в нужную клетку на доске — при условии, что это возможно.

Подробно эта проблематика рассмотрена в статье Преобразование координат при калибровке роботов.

Умение правильно выбирать последовательность элементарных геометрических преобразований помогает в решении множества других задач (см. Примеры геометрических преобразований).»

Можно получить результирующую матрицу, которая определяет положение ГСК относительно ЛСК. Для этого необходимо перемножить матрицы с отрицательными углами в последовательности выполнения поворотов:

Почему знак угла поворота меняется на противоположный? Объяснение этому простое. Движение относительно. Абстрагируемся и представим, что ГСК меняет положение относительно неподвижной ЛСК. При этом направление вращения меняется на противоположное.

Перемножение матриц даст следующий результат:

Результирующую матрицу можно использовать для пересчета координат из ГСК в ЛСК:

Для пересчета координат из ЛСК в ГСК используется результирующая обратная матрица.

В обратной матрице последовательность поворота и знаки углов меняются на противоположные (в рассматриваемом примере снова на положительные) по сравнению с матрицей определения положения ГСК относительно ЛСК.

Перемножение матриц даст следующий результат:

Выше был рассмотрен случай определения углов Эйлера через вращение относительно осей ЛСК. То же взаимное положение СК можно получить, выполняя вращение относительно осей ГСК:

  • оси z (угол (gamma+pi/2));
  • оси y (угол угол beta);
  • оси z (угол (-alpha)).

Определение углов Эйлера через вращение относительно осей ГСК позволяет также просто получить зависимости для пересчета координат из ЛСК в ГСК через перемножение матриц поворота.

В рамках рассматриваемой задачи вместо угла gamma в матрицe Az используем угол gamma+pi/2.

Также легко можно перейти к зависимостям для пересчета координат из ГСК в ЛСК.

Обратная матрица получается перемножением обратных матриц в обратном порядке по сравнению с прямым преобразованием. При этом каждая из обратных матриц вращения может быть получена заменой знака угла на противоположный.

Детально с теоретическими основами аффинных преобразований (включая и вращение) можно ознакомиться в статье Геометрические преобразования в графических приложениях

Примеры преобразований рассмотрены в статьях:

Axis Angle представление вращения

Выбрав подходящую ось (англ. rotation axis) и угол (англ. rotation angle) можно задать любую ориентацию объекта.

Обычно хранят ось вращения в виде единичного вектора и угол поворота вокруг этой оси в радианах или градусах.

q = [ x, y, z, w ] = [ v, w ]

В некоторых случаях удобно хранить угол вращения и ось в одном векторе. Направление вектора при этом совпадает с направлением оси вращения, а его длина равна углу поворота:

q = [ x, y, z]; w=sqrt (x*x +y*y +z*z)

В физике, таким образом хранят угловую скорость. Направление вектора совпадает с направлением оси вращения, а длина вектора равна скорости (в радианах в секунду).

Можно описать рассмотренные выше углы Эйлера через Axis Angle представление в 3 этапа:

q1 = [ 0, 0, 1, alpha]; q2 = [ 1, 0, 0, beta]; q3 = [ 0, 0, 1, gamma ]

Здесь каждое вращение выполняется относительно осей текущего положения ЛСК. Такое преобразование равнозначно рассмотренному выше преобразованию через матрицы поворота:

Возникает вопрос, а можно ли 3 этапа Axis Angle представления объединить в одно, подобно матрицам поворота? Попробуем решить геометрическую задачу по определению координат последнего вектора вращения в последовательности преобразований через Axis Angle представления:

q = [ x, y, z, gamma ]

Есть ли представление q= [x, y, z, gamma] композицией последовательности из 3-х этапов преобразований? Нет! Координаты x, y, z определяют всего лишь положение оси Z ЛСК после первого и второго этапов преобразований:

При этом ось Z, отнюдь, не есть вектор вращения для Axis Angle представления, которое могло бы заменить рассмотренные 3-х этапа преобразований.

Еще раз сформулирую задачу, которая математически пока не решена: «Необходимо найти значение угла (rotation angle) и положение оси (rotation axis), вращением относительно которой на этот угол можно заменить комбинацию из 3-х поворотов Эйлера вокруг осей координат».

К сожалению, никакие операции (типа объединения нескольких преобразований в одно) с Axis Angle представлениями нельзя выполнить. Не будем расстраиваться. Это можно сделать через кватернионы, которые также определяют вращение через параметры оси и угол.

Кватернионы

Кватернион (как это и видно по названию) представляет собой набор из четырёх параметров, которые определяют вектор и угол вращения вокруг этого вектора. По сути такое определение ничем не отличается от Axis Angle представления вращения. Отличия лишь в способе представления. Как же хранят вращение в кватернионе?

q = [ V*sin(alpha/2), cos(alpha/2) ]

В кватернионе параметры единичного вектора умножается на синус половины угла поворота. Четвертый компонент — косинус половины угла поворота.

Таблица с примерами значений кватернионов:

Представление вращения кватернионом кажется необычным по сравнению с Axis Angle представлением. Почему параметры вектора умножаются на синус половины угла вращения, четвертый параметр — косинус половины угла вращения, а не просто угол?

Откуда получено такое необычное представление кватерниона детально можно ознакомиться в статье Доступно о кватернионах и их преимуществах. Хотя программисту не обязательно знать эти детали, точно также как и знать, каким образом получены матрицы преобразования пространства. Достаточно лишь знать основные операции с кватернионами, их смысл и правила применения.

Основные операции над кватернионами

Кватернион удобно рассматривать как 4d вектор, и некоторые операции с ним выполняются как над векторами.

Сложение, вычитание и умножение на скаляр.

Смысл операции сложения можно описать как «смесь» вращений, т.е. мы получим вращение, которое находится между q и q’.

Что-то подобное сложению кватернионов выполнялось при неудачной попытке объединить 3 этапа Axis Angle представления.

Умножение на скаляр на вращении не отражается. Кватернион, умноженный на скаляр, представляет то же самое вращение, кроме случая умножения на 0. При умножении на 0 мы получим «неопределенное» вращение.

Пример сложения 2-х кватернионов:

Норма и модуль

Следует различать (а путают их часто) эти две операции:

Модуль (magnitude), или как иногда говорят «длина» кватерниона:

Через модуль кватернион можно нормализовать. Нормализация кватерниона — это приведение к длине = 1 (так же как и в векторах):

Обратный кватернион или сопряжение ( conjugate )

Обратный кватернион задает вращение, обратное данному. Чтобы получить обратный кватернион достаточно развернуть вектор оси в другую сторону и при необходимости нормализовать кватернион.

Например, если разворот вокруг оси Y на 90 градусов = (w=0,707; x = 0; y = 0,707; z=0), то обратный = (w=0,707; x = 0; y = -0,707; z=0).

Казалось бы, можно инвертировать только компоненту W, но при поворотах на 180 кватернион представляется как (w=1; x = 0; y = 0; z=0), то есть, у него длина вектора оси = 0.

Фрагмент программной реализации:

Инверсный (inverse) кватернион

Существует такой кватернион, при умножении на который произведение дает нулевое вращение и соответствующее тождественному кватерниону (identity quaternion), и определяется как:

Тождественный кватернион

Записывается как q[0, 0, 0, 1]. Он описывает нулевой поворот (по аналогии с единичной матрицей), и не изменяет другой кватернион при умножении.

Скалярное произведение

Скалярное произведение полезно тем, что дает косинус половины угла между двумя кватернионами, умноженный на их длину. Соответственно, скалярное произведение двух единичных кватернионов даст косинус половины угла между двумя ориентациями. Угол между кватернионами — это угол поворота из q в q’ (по кратчайшей дуге).

Вращение 3d вектора

Вращение 3d вектора v кватернионом q определяется как

причем вектор конвертируется в кватернион как

и кватернион обратно в вектор как

Умножение кватернионов

Одна из самых полезных операций, она аналогична умножению двух матриц поворота. Итоговый кватернион представляет собой комбинацию вращений — сначала объект повернули на q, а затем на q’ (если смотреть из глобальной системы координат).

Примеры векторного и скалярного перемножения 2-х векторов векторное произведение — вектор: Скалярное произведение — число:

Пример умножения 2-х кватернионов:

Конвертирование между кватернионом и Axis Angle представлением

В разделе Axis Angle представление вращения была сделана неудачная попытка объединить 3 Axis Angle представления в одно . Это можно сделать опосредовано. Сначала Axis Angle представления конвертируются в кватернионы, затем кватернионы перемножаются и результат конвертируется в Axis Angle представление.

Пример конвертирования произведения 2-х кватернионов в Axis Angle представление:

Фрагмент программы на C:

Конвертирование кватерниона в матрицу поворота

Матрица поворота выражается через компоненты кватерниона следующим способом:

где

Проверим формулы конвертирования на примере конвертирования произведения 2-х кватернионов в матрицу поворотов:

Определяем элемент матрицы m[0][0] через параметры кватерниона:

Соответствующее произведению кватернионов (q1 и q2) произведение матриц поворотов было получено ранее (см. Матрицы поворота и углы Эйлера):

Как видим, результат m[0][0], полученный через конвертирование, совпал с значением в матрице поворота.

Фрагмент программного кода на С для конвертирования кватерниона в матрицу поворота:

При конвертировании используется только умножения и сложения, что является несомненным преимуществом на современных процессорах.

Часто для задания вращений используют только кватернионы единичной длины, но это не обязательно и иногда даже не эффективно. Разница между конвертированием единичного и неединичного кватернионов составляет около 6-ти умножений и 3-х сложений, зато избавит во многих случаях от необходимости нормировать (приводить длину к 1) кватернион. Если кусок кода критичен по скорости и вы пользуетесь только кватернионами единичной длины тогда можно воспользоваться фактом что норма его равна 1.

Конвертирование матрицы поворота в кватернион

Конвертирование матрицы в кватернион выполняется не менее эффективно, чем кватерниона в матрицу, но в итоге мы получим кватернион неединичной длины. Его можно нормализовать.

Фрагмент программного кода конвертирования матрицы поворота в кватернион:

Дифференциальное уравнение Эйлера

Напомним, что необходимым условием существования у дифференцируемой функции экстремума в некоторой точке является равенство нулю производной в этой точке: , или, что то же самое, равенство нулю дифференциала функции .

Нашей ближайшей целью будет найти аналог этого условия в вариационном исчислении и выяснить, какому необходимому требованию должна удовлетворять функция, дающая экстремум функционалу.

Мы покажем, что такая функция должна удовлетворять некоторому дифференциальному уравнению. Форма уравнения будет зависеть от вида рассматриваемого функционала. Изложение мы начнем с так называемого простейшего интеграла вариационного исчисления, под которым подразумевают функционал, имеющий следующее интегральное представление:

Функция , стоящая под знаком интеграла, зависит от трех аргументов . Будем считать ее определенной и дважды непрерывно дифференцируемой по аргументу для всех значений, по аргументам же и — в некоторой области плоскости . Ниже предполагается, что мы всегда будем находиться внутри этой области.

Под понимается некоторая функция от

непрерывно дифференцируемая на отрезке , и есть производная от нее.

Геометрически функцию можно изобразить в плоскости некоторой линией , лежащей над отрезком (рис. 3).

Интеграл (9) является обобщением интегралов (3) и (6), с которыми мы встретились в задачах о линии наискорейшего ската и поверхности вращения наименьшей площади. Значение его зависит от выбора функции или от линии , и задача о его минимуме имеет следующий смысл.

Дано некоторое множество функций (10) (линий ). Среди них нужно найти ту функцию (линию ), для которой интеграл имеет наименьшее значение.

Мы должны прежде всего точно определить множество функций, для которых мы будем рассматривать значение интеграла (9). Функции этого множества в вариационном исчислении обычно называют допустимыми к сравнению. Рассмотрим задачу с закрепленными граничными значениями. Множество допустимых функций определяется здесь двумя следующими требованиями:

1) функция непрерывно дифференцируема на отрезке ;

2) на концах отрезка функция принимает заданные наперед значения

В остальном функция может быть совершенно произвольной. Если говорить языком геометрии, мы рассматриваем всевозможные гладкие линии, лежащие над промежутком , которые проходят через две точки и и могут быть заданы уравнением (10). Функцию, доставляющую минимум интегралу, будем считать существующей и назовем ее .

Следующие простые и остроумные соображения, часто применяемые в вариационном исчислении, дают возможность весьма просто выяснить необходимое условие, которому должна удовлетворять . По сути дела они позволяют задачу о минимуме интеграла (9) привести к задаче о минимуме функции.

Рассмотрим семейство функций, зависящее от численного параметра

Чтобы функция при любом была допустимой функцией, мы должны считать непрерывно дифференцируемой и обращающейся в нуль на концах отрезка

Интеграл (9), вычисленный для , будет некоторой функцией параметра

Разность называют вариацией (изменением) функции и обозначают , а разность — полной вариацией интеграла (9). Отсюда и произошло название вариационного исчисления.

Так как функция дает минимальное значение интегралу, то функция должна иметь минимум при , и производная от нее в этой точке обязана обращаться в нуль

Последнее равенство должно выполняться при всякой непрерывно дифференцируемой функции , обращающейся в нуль на концах отрезка . Для получения вытекающего отсюда следствия удобнее второй член в условии (14) преобразовать интегрированием по частям

и придать условию (14) другую форму

Может быть доказана следующая простая лемма.

Пусть выполняются условия:

1) функция непрерывна на отрезке ;

2) функция непрерывно дифференцируема на отрезке и на концах отрезка обращается в нуль.

Если при любой такой функции интеграл равен нулю, то отсюда следует, что .

Действительно, допустим, что в некоторой точке с функция отлична от нуля, и покажем, что тогда заведомо существует такая функция , для которой , вопреки условию леммы.

Так как и непрерывна, наверное существует около точки такой промежуток , в котором будет всюду отличной от нуля и, стало быть, сохранять знак.

Всегда можно построить функцию , непрерывно дифференцируемую на , положительную на и равную нулю всюду вне (рис. 4).

Такой будет, например, , определенная равенствами

Но для такой функции

Последний же интеграл не может быть равен нулю, так как произведение внутри промежутка интегрирования отлично от нуля и сохраняет знак.

Ввиду того, что равенство (15) должно выполняться для всякой , непрерывно дифференцируемой и обращающейся в нуль на концах отрезка , мы можем, согласно лемме, утверждать, что это может быть только в том случае, когда

или после вычисления производной по переменной

Равенство это является дифференциальным уравнением 2-го порядка относительно функции . Оно называется уравнением Эйлера .

Мы можем сделать следующее заключение.

Если функция доставляет интегралу минимум, то она должна удовлетворять дифференциальному уравнению Эйлера (17). Последнее в вариационном исчислении имеет значение, вполне сходное со значением необходимого условия в теории экстремумов функций. Оно позволяет сразу отбросить все допустимые функции, которые этому условию не удовлетворяют, так как на них интеграл заведомо не может достигать минимума. Этим очень сильно сужается круг допустимых функций, подлежащих изучению. Свое внимание мы можем сосредоточить только на решениях уравнения (17).

Сами решения уравнения (17) обладают тем свойством, что производная

для них обращается в нуль при любых , и они аналогичны по своему значению стационарным точкам функции. Поэтому часто говорят, что на решениях (17) интеграл имеет стационарное значение.

В нашей задаче с закрепленными граничными значениями нужно найти далеко не все решения эйлерова уравнения, а только те из них, которые принимают предписанные значения в точках .

Обратим внимание на то, что уравнение Эйлера (17) имеет 2-й порядок. Общее его решение будет содержать две произвольные постоянные

Их нужно определить так, чтобы интегральная кривая проходила через точки и , что доставляет два уравнения для нахождения постоянных и

Во многих случаях эта система имеет только одно решение, и тогда будет существовать только одна интегральная линия, проходящая через точки и .

Разыскание функций, подозрительных на минимум интеграла, мы привели к решению следующей граничной задачи дифференциальных уравнений: на отрезке нужно найти те решения уравнения (17), которые на концах этого отрезка принимают заданные значения .

Часто эту последнюю задачу удается решить при помощи методов, известных в теории дифференциальных уравнений.

Еще раз указываем на то, что каждое решение такой граничной задачи может только подозреваться на минимум и в дальнейшем еще надлежит проверить, будет ли оно или не будет доставлять минимальное значение интегралу. Но в частных случаях, особенно часто встречающихся в приложениях, уравнение Эйлера вполне решает задачу о нахождении минимума интеграла. Пусть нам заранее будет известно, что функция, доставляющая минимум интегралу, существует, и мы допустим, кроме того, что уравнение Эйлера (17) имеет только одно решение, удовлетворяющее граничным условиям (11), и, стало быть, только одна допустимая линия может быть заподозрена на минимум. При этих условиях можно быть уверенным в том, что найденное решение уравнения (17) действительно дает минимум интегралу.

Пример . Ранее было установлено, что [url]задача о линии наискорейшего ската[/url] может быть приведена к нахождению минимума интеграла

на множестве функций, удовлетворяющих граничным условиям .


источники:

http://mathhelpplanet.com/static.php?p=differentsialnoe-uravnenie-eilera