Вид простейшего показательные уравнения и

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной \(х\) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение \(х\). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо \(х\) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если \(х=3\), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны \(3\), только вот степени разные – слева степень \((4х-1)\), а справа \((-2)\). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что \(125=5*5*5=5^3\), а \(25=5*5=5^2\), подставим:

Воспользуемся одним из свойств степеней \((a^n)^m=a^\):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить \(2\) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^<-x>=125 \Rightarrow 5^<-x>=5*5*5 \Rightarrow 5^<-x>=5^3 \Rightarrow –x=3 \Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 \Rightarrow (3*3)^<4x>=3*3*3*3 \Rightarrow(3^2)^<4x>=3^4 \Rightarrow 3^<8x>=3^4 \Rightarrow 8x=4 \Rightarrow x=\frac<1><2>.$$

Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что \(9=3^2\), тогда \(9^x=(3^2)^x=3^<2x>=(3^x)^2\). Здесь мы воспользовались свойством степеней: \((a^n)^m=a^\). Подставим:

Обратим внимание, что во всем уравнении все \(х\) «входят» в одинаковую функцию — \(3^x\). Сделаем замену \(t=3^x, \; t>0\), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание \(3\). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член \(3=2+1\) и вынести общий множитель \(2\):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение \(t\):

Тут у нас две показательные функции с основаниями \(7\) и \(3\), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на \(3^x\):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену \(t=(\frac<7><3>)^x\):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену \(t=2^x\) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель \(2^x\)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании \(2\), \(5\) и \(10\). Очевидно, что \(10=2*5\). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой \((a*b)^n=a^n*b^n\):

И перекинем все показательные функции с основанием \(2\) влево, а с основанием \(5\) вправо:

Сокращаем и воспользуемся формулами \(a^n*a^m=a^\) и \(\frac=a^\):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Показательные уравнения

О чем эта статья:

6 класс, 7 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение показательного уравнения

Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.

Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:

Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.

С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a

Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.

Простейшие показательные уравнения

После того, как мы разобрались с вопросом, что такое показательные уравнения, следует остановиться на так называемых простейших показательных уравнениях. Тому есть две причины. Первая – изучение чего-то нового всегда логично начинать с самого простого. Вторая – к простейшим показательным уравнениям часто сводятся решения более сложных показательных уравнений. Так давайте выясним, какие показательные уравнения называют простейшими, и научимся решать простейшие показательные уравнения.

Какие показательные уравнения называют простейшими

простейшими показательными уравнениями называют уравнения a x =b , где a и b – числа, причем a>0 и a≠1 .

В точности так про простейшие показательные уравнения сказано в учебнике Колмогорова [1, с. 229].

Прежде чем привести примеры простейших показательных уравнений, отвечающих этому определению, считаем нужным сказать пару слов об условиях a>0 и a≠1 .

Первое из них объясняется определением степени, ведь степень с действительным показателем мы определили лишь для положительных оснований. Это не означает, что не нужно изучать уравнения a x =b при a и a=0 , ведь они не лишены смысла. Уравнения a x =b при a имеют смысл на множестве целых чисел, а уравнения a x =b при a=0 , то есть, уравнения 0 x =b , имеют смысл на множестве положительных действительных чисел. Решение уравнений a x =b при a имеет свою специфику, с которой лучше разбираться отдельно. Уравнения a x =b при a=0 есть частный случай уравнений, сводящихся к числовым равенствам.

А зачем в определении простейших показательных уравнений второе условие a≠1 ? Это условие исключает из рассмотрения уравнения 1 x =b . Это тоже уравнения, сводящиеся к числовым равенствам.

Итак, дальше в этой статье мы считаем, что a>0 , a≠1 .

Теперь обещанные примеры. Начнем с уравнения 2 x =8 . Это есть уравнение a x =b при a=2 , b=8 , значит, это простейшее показательное уравнение. Аналогично, 3 x =7 , , 2 x =0 , 5 x =−25 – простейшие показательные уравнения.

Еще вспомним, что числа могут быть записаны не только в виде отдельных чисел, но и в виде числовых выражений. Этот факт и данное выше определение позволяют нам утверждать, что уравнения A x =B , где A и В – числовые выражения, причем A>0 , A≠1 , это тоже простейшие показательные уравнения. Так 5 x =5 3 , , – это простейшие показательные уравнения.

Встречаются и немного отличающиеся взгляды на простейшие показательные уравнения. Вот тому пример

Простейшим показательным уравнением является уравнение a x =b , где a и b – данные положительные числа ( a≠1 ), а x – неизвестная величина [2, с. 111].

От первого определения оно отличается тем, что дано ограничение на число b – оно подразумевается положительным. В первом определении про число b ничего не сказано, поэтому, оно подразумевается любым (отрицательным, нулем, положительным). Если придерживаться второго определения, то два из приведенных выше уравнений, а именно, 2 x =0 и 5 x =−25 , не будут простейшими.

Считать или не считать простейшими уравнения a x =b при b=0 и b – судить не нам. Главное – уметь их решать. Давайте научимся это делать.

Как решать простейшие показательные уравнения? Алгоритм

Судя по названию, простейшие показательные уравнения a x =b , где a и b – числа, причем a>0 , a≠1 , должны решаться легко. Так оно и есть:

  • Если b или b=0 , то уравнение a x =b не имеет решений.
  • Если b>0 , то исходное уравнение a x =b нужно преобразовать к виду a x =a c (кроме случаев, когда оно сразу имеет такой вид), откуда очевиден единственный корень x=c .

Например, простейшие показательные уравнения 3 x =−5 и (0,3) x =0 не имеют решений, так как в правой части первого из них находится отрицательное число, а в правой части второго – нуль. А чтобы решить простейшее показательное уравнение 2 x =8 , его нужно преобразовать к виду 2 x =2 3 , что позволяет увидеть его единственное решение x=3 .

После знакомства с логарифмом появляется возможность обходиться без преобразования исходного простейшего показательного уравнения a x =b при b>0 к виду a x =a c , а сразу записывать решение через логарифм как x=logab .

Почему решать простейшие показательные уравнения нужно именно так, обоснуем в следующем пункте. А сейчас запишем алгоритм решения простейших показательных уравнений:

Чтобы решить простейшее показательное уравнение a x =b , где a и b – числа, причем a>0 , a≠1 , надо

  1. Убедиться, что перед нами именно простейшее показательное уравнение. Для этого нужно проверить, что уравнение имеет вид a x =b , и убедиться, что a>0 и a≠1 .
  2. Посмотреть, каким числом является b : отрицательным, нулем, или положительным.
    • Если b или b=0 , то сделать вывод об отсутствии решений.
    • Если b>0 , то перейти к следующему шагу.
  3. Если b представляет собой степень a c , то перейти к следующему шагу. В противном случае представить число b в виде степени a c , то есть, перейти от исходного уравнения a x =b к уравнению a x =a c .
  4. От равенства степеней a x =a c перейти к равенству их показателей, то есть, к равенству x=c . Это даст единственный корень исходного уравнения.

Теоретическое обоснование

Решение показательных уравнений a x =b , где a>0 , a≠1 , b – некоторое число, базируется на следующих двух утверждениях:

  • Если b=0 или b , то уравнение a x =b не имеет решений.
  • Если b>0 , то уравнение a x =b имеет единственное решение x=logab , где logab – логарифм числа b по основанию a . В частности, если число b представляет собой некоторую степень числа a , то есть, b=a c , то единственное решение уравнения есть x=c .

Сразу заметим, что сейчас в школе показательные уравнения обычно изучают до знакомства с логарифмом. По этой причине сначала обходят обращение к логарифму. И делают это так: рассматривают только такие простейшие показательные уравнения, в которых число b представляет собой некоторую степень числа a . То есть, сначала рассматривают уравнения a x =a c , где c – некоторое число. Единственным решением уравнения a x =a c является x=c . А уже после знакомства с логарифмом возвращаются к показательным уравнениям, и уже тогда говорят про единственное решение простейшего показательного уравнения a x =b в виде x=logab .

Сейчас мы приведем доказательство этих утверждений, чтобы стало понятно, откуда они произрастают. После этого рассмотрим решения нескольких простейших показательных уравнений, которые покрывают все случаи: и когда b , и когда b=0 , и когда b можно представить в виде степени числа a без использования логарифма, и когда без логарифма не обойтись.

Если b=0 или b , то уравнение a x =b , где a>0 , a≠1 не имеет решений.

Из определения степени вытекает, что если a>0 , то a x >0 при любом значении переменной x . Из этого следует, что ни при каком значении переменной x равенство a x =b не может быть достигнуто, если b=0 или b . Значит, если b=0 или b , то уравнение a x =b не имеет решений, что и требовалось доказать.

Если b>0 , то уравнение a x =b имеет единственное решение x=logab , где logab – логарифм числа b по основанию a . В частности, если число b представляет собой некоторую степень числа a , то есть, b=a c , то единственное решение уравнения есть x=c .

Доказательство позволяют провести известные свойства показательной функции y=a x , а именно, область значений показательной функции и свойство монотонности.

Для доказательства существования корня у простейшего показательного уравнения a x =b при b>0 нам потребуется известная область значений показательной функции y=a x . Ею является множество всех положительных чисел. Так как у нас по условию b>0 , то b принадлежит области значений показательной функции y=a x . То есть, функция y=a x обязательно принимает значение b . Из этого следует, что уравнение a x =b имеет решение.

Мы доказали, что если b>0 , то простейшее показательное уравнение a x =b обязательно имеет решение. Докажем, что это решение единственное. Для этого обопремся на монотонность показательной функции и воспользуемся методом от противного. Предположим, что кроме корня x1 уравнение a x =b имеет еще один корень x2 , отличный от x1 , то есть, x1≠x2 . Так как и x1 и x2 – корни уравнения a x =b , то a x1 =b и a x2 =b – верные числовые равенства. Свойства числовых равенств позволяют нам проводить почленное вычитание верных числовых равенств. Вычтем из равенства a x1 =b равенство a x2 =b , это дает a x1 −a x2 =b−b и дальше a x1 −a x2 =0 , что то же самое a x1 =a x2 . Но из монотонности функции y=a x и из неравенства x1≠x2 следует, что либо a x1 >a x2 , либо a x1 x2 . А это противоречит результату a x1 =a x2 . Так доказано, что простейшее показательное уравнение a x =b при b>0 имеет единственный корень.

Итак, мы доказали что уравнение a x =b при b>0 имеет корень, причем единственный. Докажем, что этим корнем является логарифм числа b по основанию a , то есть, x=logab . Это напрямую следует из определения логарифма.

Остается показать, что если b=a c , то корнем уравнения a x =b является x=c . Это очевидно. Уравнение a x =b при b=a c имеет вид a x =a c , корень этого уравнения очевиден x=c . Здесь к месту напомнить, что две степени с одинаковыми положительными и не равными единице основаниями равны тогда и только тогда, когда их показатели равны (это известное свойство степеней). К этому же результату мы придем, если будем действовать через логарифмы: x=logab – корень уравнения a x =b , при b=a c имеем x=logab=logaa c =с .

Утверждение полностью доказано.

Решение общими методами

Алгоритм с его теоретическим обоснованием представляет собой полноценный метод решения простейших показательных уравнений. Однако стоит иметь в виду, что простейшие показательные уравнения можно решать при помощи хорошо известных методов решения уравнений. А именно:

  • Вывод о том, что простейшее показательное уравнение a x =b при b или b=0 не имеет решений, можно сделать на основании метода оценки.
  • Преобразование простейшего показательного уравнения a x =b при b>0 к виду a x =a c проводится в соответствии методом решения уравнений через преобразования, а следующий переход к равенству x=c делается в согласии с методом уравнивания показателей, который по сути является методом освобождения от внешней функции.
  • Простейшее показательное уравнение a x =b при b>0 можно решать и методом логарифмирования, подразумевающим переход от a x =b к logaa x =logab . А следующий переход от уравнения logaa x =logab к x=logab , дающий нам конечный результат, проводится в согласии с методом решения уравнений через преобразования.

Примеры решений

В предыдущих пунктах мы разобрали теорию решения простейших показательных уравнений и записали алгоритм. Давайте перейдем к практике, и разберем решения нескольких характерных примеров.

Сначала покажем решения уравнений a x =b , где a>0 , a≠1 , а число b в правой части — отрицательное. Выше мы показали, что такие уравнения не имеют решений.

б)

в)

Теперь покажем решения простейших показательных уравнения с нулями в правых частях. Такие уравнения тоже не имеют решений.

б)

Теперь давайте рассмотрим примеры решения простейших показательных уравнений, отвечающих виду a x =a c . Их единственное решение очевидно: x=c .

Решите показательные уравнения:

а)

б)

в)

г)

В предыдущем примере мы имели дело с очень удобными для решения простейшими показательными уравнениями, имеющими вид a x =a c . Давайте рассмотрим решения чуть более сложных уравнений, которые изначально имеют вид, отличный от a x =a c , но могут быть приведены к нему посредством преобразования числовых выражений, находящихся в правых частях.

б)

в)

г)

Но иногда число или числовое выражение в правой части уравнения невозможно представить в виде степени с нужным основанием без использования логарифма. Так что стоит остановиться на случаях, когда без логарифмов не обойтись.

б)

На простейшие показательные уравнения внешне похожи уравнения a f(x) =b , где f(x) – некоторое выражение с переменной x . Например, 2 x−1 =2 2 , . Про их решение мы поговорим чуть позже. До этого нужно разобрать алгоритм решения показательных уравнений.


источники:

http://skysmart.ru/articles/mathematic/pokazatelnye-uravneniya

http://www.cleverstudents.ru/equations/elementary_exponential_equations.html