Видеоурок геометрия 9 класс атанасян уравнение окружности

Разработка урока геометрии в 9 классе «Вывод формулы уравнения окружности»
план-конспект урока по геометрии (9 класс) по теме

Урок проведен по учебнику Л.С.Атанасяна. Сопровождается компьютерной презентацией. На первом этапе урока выводится формула уравнения окружности, затем рассматриваются ключевые задачи к предложенной теме. И заключении предложена разноуровневая групповая работа, ориентированная на закрепление новой темы.

Скачать:

ВложениеРазмер
uravnenie_okruzhnosti.docx765.56 КБ
prezentaciya_uravnenie_okruzhnosti_.ppt1.68 МБ

Предварительный просмотр:

Разработка урока «Уравнение окружности», геометрия 9 класс

Образовательные: Вывести уравнение окружности, рассмотрев решение этой задачи как одну из возможностей применения метода координат.

– Распознать уравнение окружности по предложенному уравнению, научить учащихся составлять уравнение окружности по готовому чертежу, строить окружность по заданному уравнению.

Воспитательные: Формирование критического мышления и навыков работы в группе.

Развивающие : Развитие умения составлять алгоритмические предписания и умение действовать в соответствии с предложенным алгоритмом.

– Видеть проблему и наметить пути её решения.

– Кратко излагать свои мысли устно и письменно.

Тип урока: усвоения новых знаний.

Оборудование: ПК , мультимедийный проектор, экран.

1. Вступительное слово – 3 мин.

2. Актуализация знаний – 2 мин.

3. Постановка проблемы и её решение в ходе общеклассной дискуссии –10 мин.

4. Фронтальное закрепление нового материала – 7 мин.

5. Самостоятельная работа в группах – 15 мин.

6. Презентация работы группы 2. Обсуждение – 5 мин.

7. Итог урока. Домашнее задание – 3 мин.

1. Вступительное слово

Формулы координат середины отрезка и расстояния между двумя точками можно использовать для решения более сложных геометрических задач. С этой целью следует ввести прямоугольную систему координат и записать условие задачи в координатном виде. После этого решение задачи проводится с помощью алгебраических вычислений.

Такой метод решения задач принято называть методом координат.

Сегодня мы с вами используя метод координат, выведем уравнение окружности.

Повторение материала, изученного ранее на с лайде 3 :

– Запишите формулу нахождения координат середины отрезка.

– Запишите формулу вычисления длины вектора.

– Запишите формулу нахождения расстояния между точками (длины отрезка).

3. Постановка проблемы и её решение

Осуществляется в ходе общеклассной дискуссии по плану, предложенному на слайдах 4 – 7 презентации (Приложение Д.3. – Презентация «Уравнение окружности»).

Слайд 4 презентации

Как вы считаете, что значит составить уравнение окружности, и что для этого нужно знать?

Всякую фигуру мы рассматриваем как совокупность точек, из которых она состоит, и задать фигуру- это значит задать способ, по которому можно было бы узнавать принадлежит ли та или иная точка рассматриваемой фигуре или нет.

Какое самое важное условие можно выделить в определении окружности?

Слайд 5 презентации

Слайд 6 презентации

Слайд 7 презентации

Итак, что надо знать для составления уравнения окружности?

Предложите алгоритм составления уравнения окружности.

Вывод: слайд8 , записать в тетрадь.

Слайд 8 презентации

Фронтальная работа. Выполнить упражнения, предложенные на слайдах 9 – 12.

Слайд 9 презентации

Слайд 10 презентации

Слайд 11 презентации

Слайд 12 презентации

5. Самостоятельная работа в группах

Для проведения следующего этапа урока класс делится на 3 группы:

– 1 группа с низким уровнем мотивации к учебе;

– 2 группа высокий уровень;

– 3 группа – средний.

Задание группам слайды 13-19

Слайды 13, 14 презентации

Учащиеся группы получают карточки на бумажном носителе и работают на них. Карточки сдаются на проверку.

Слайды 15, 16 презентации

Решение этой задачи заполняется в таблице на слайде и сразу же проецируется на экран.

Презентация по геометрии «Уравнения окружности и прямой» (9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Уравнения окружности и прямой 9 класс МАОУ СОШ № 13 города Тюмени

Краткое описание документа:

Презентация к уроку геометрии «Уравнения окружности и прямой» (9 класс) создана к учебнику Атанасян Л. С. «Геометрия 7-9». Показ можно осуществлять на уроке в целях знакомства школьников с теоретическим материалом, а также при его повторении.Данная работа обеспечивает максимальную наглядность при изучении темы. Слайды являются конспектами по ряду учебных тем.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 945 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 687 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 315 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 593 155 материалов в базе

Материал подходит для УМК

«Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

§ 3. Уравнения окружности и прямой

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 06.05.2018
  • 545
  • 2

  • 06.05.2018
  • 226
  • 0

  • 06.05.2018
  • 3793
  • 626

  • 06.05.2018
  • 871
  • 12

  • 06.05.2018
  • 1439
  • 2

  • 06.05.2018
  • 566
  • 1

  • 06.05.2018
  • 1228
  • 10

  • 06.05.2018
  • 1509
  • 91

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 06.05.2018 12861
  • PPTX 1.7 мбайт
  • 2434 скачивания
  • Рейтинг: 3 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Колчанова Гульнара Рафаильевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 7 лет и 4 месяца
  • Подписчики: 4
  • Всего просмотров: 1082325
  • Всего материалов: 359

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

Студенты российских вузов смогут получить 1 млн рублей на создание стартапов

Время чтения: 3 минуты

Школьник из Сочи выиграл международный турнир по шахматам в Сербии

Время чтения: 1 минута

РДШ организовало сбор гуманитарной помощи для детей из ДНР

Время чтения: 1 минута

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

§ 3. Уравнения окружности и прямой

При изучении алгебры мы строили графики некоторых функций в прямоугольной системе координат, например график функции у-х. Известно, что графиком этой функции является прямая, проходящая через точки О (0; 0) и А(1;1) (рис. 284). Координаты любой точки М (х; у), лежащей на прямой О А, удовлетворяют уравнению у = х (так как ММ1 = ММ2), а координаты любой точки, не лежащей на прямой ОА, этому уравнению не удовлетворяют. Говорят, что уравнение у = х является уравнением прямой О А. Введём теперь понятие уравнения произвольной линии.

Пусть на плоскости задана прямоугольная система координат Оху и дана некоторая линия L (рис. 285). Уравнение с двумя переменными х и у называется уравнением линии L, если этому уравнению удовлетворяют координаты любой точки линии L и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

При изучении линий методом координат возникают две задачи: 1) по геометрическим свойствам данной линии найти её уравнение; 2) обратная задача: по заданному уравнению линии исследовать её геометрические свойства. В следующем пункте мы рассмотрим первую из этих задач применительно к окружности. Вторая задача рассматривалась в курсе алгебры при построении графиков функций.

Уравнение окружности

Выведем уравнение окружности радиуса г с центром С в заданной прямоугольной системе координат. Пусть точка С имеет координаты (x0; у0) (рис. 286). Расстояние от произвольной точки М (х; у) до точки С вычисляется по формуле Если точка М лежит на данной окружности, то МС = r, МС 2 = r 2 , т. е. координаты точки М удовлетворяют уравнению

Если же точка М (х; у) не лежит на данной окружности, то МС 2 ≠ r 2 , и, значит, координаты точки М не удовлетворяют уравнению (1). Следовательно, в прямоугольной системе координат уравнение окружности радиуса r с центром в точке С (х0; у0) имеет вид:

(х — х1) 2 + (у — у0) 2 = r 2 .

В частности, уравнение окружности радиуса r с центром в начале координат имеет вид:

Найти уравнение окружности с центром в точке (-3; 4), проходящей через начало координат.

Центр окружности имеет координаты (-3; 4). Поэтому уравнение этой окружности можно записать в виде (х + 3) 2 + (у — 4) 2 = r 2 , где r — пока неизвестный радиус окружности. Найдём его. Для этого воспользуемся тем, что окружность проходит через начало координат, т. е. координаты точки О (0; 0) удовлетворяют этому уравнению: (0 + 3) 2 + (0 — 4) 2 = r 2 . Отсюда r 2 = 25, и, значит, r = 5. Итак, искомое уравнение окружности имеет вид (х + 3) 2 + (у — 4) 2 = 25.

Если раскрыть скобки и привести подобные члены, то получится уравнение х 2 + у 2 + 6х — 8у = 0, которое также является уравнением данной окружности.

Уравнение прямой

Выведем уравнение данной прямой l в заданной прямоугольной системе координат. Отметим две точки А (x1; у1) и В (х2; у2) так, чтобы прямая l была серединным перпендикуляром к отрезку АВ (рис. 287, а). Если точка М (х; у) лежит на прямой l, то АМ = ВМ, или AM 2 = ВМ 2 , т. е. координаты точки М удовлетворяют уравнению

Если же точка М (x; у) не лежит на прямой l, то AM 2 ≠ ВМ 2 , и, значит, координаты точки М не удовлетворяют уравнению (2). Следовательно, уравнение (2) является уравнением прямой I в заданной системе координат. После возведения выражений в скобках в квадрат и приведения подобных членов уравнение (2) принимает вид

где а = 2 (х1 — х2), b = 2(у1 — у2), Так как А (x1; у1) и В (x2; y2) — различные точки, то хотя бы одна из разностей (х1 — х2) и (у1 — у2) не равна нулю, т. е. хотя бы один из коэффициентов а и b отличен от нуля. Таким образом, уравнение прямой в прямоугольной системе координат является уравнением первой степени.

Если в уравнении (3) коэффициент b отличен от нуля, то это уравнение можно записать так:

где Число k называется угловым коэффициентом прямой, заданной этим уравнением. Докажите самостоятельно, что:

две параллельные прямые, не параллельные оси Оу, имеют одинаковые угловые коэффициенты; вели две прямые имеют одинаковые угловые коэффициенты, то эти прямые параллельны.

Выведем уравнение прямой l, проходящей через точку М0 (x0; у0) и параллельной оси Оу (рис. 287, б). Абсцисса любой точки М (х; у) прямой l равна x0, т. е. координаты любой точки М (x; у) прямой l удовлетворяют уравнению х = х0. В то же время координаты любой точки, не лежащей на прямой l, этому уравнению не удовлетворяют. Следовательно, уравнение х = х0 является уравнением прямой l.

Ясно, что ось Ох имеет уравнение у = О, а ось Оу — уравнение х = 0.

Взаимное расположение двух окружностей

Исследуем взаимное расположение двух окружностей в зависимости от их радиусов r, R и расстояния d между их центрами. Для определённости будем считать, что r ≤ R.

Если центры окружностей совпадают, т. е. d = 0, то окружности называются концентрическими, и окружность радиуса г лежит внутри круга радиуса R (рис. 288, а).

Пусть d > 0. Введём прямоугольную систему координат Оху так, чтобы точка О была центром первой окружности, а точка с координатами (d; 0) — центром второй окружности. В этой системе координат уравнения первой и второй окружностей имеют вид

х 2 + у 2 = R 2 , (х — d) 2 + у 2 = r 2 . (4)

Если система уравнений (4) имеет решением пару чисел х = х0, у = у0, то точка М0 (х0; у0) является общей точкой данных окружностей (рис. 288, б), и обратно: если М0 (x0; у0) — общая точка данных окружностей, то пара чисел х = х0, у = у0 является решением системы уравнений (4).

Пусть система (4) имеет решением пару чисел x = х0, у = у0, т. е. справедливы числовые равенства

Вычитая из первого равенства второе, подучаем равенство 2x0d — d 2 = R 2 — r 2 , откуда

Заметим, что х0 > 0, поскольку R ≥ r и d > 0. Кроме того, как следует из первого равенства (5), х0 = т. е. для величин R, r и d должно выполняться неравенство или R 2 + d 2 — r 2 ≤ 2dR. Последнее неравенство запишем в виде (d — R) 2 ≤ r 2 . Отсюда следует, что -r ≤ d — R ≤ r, или

Отметим, что х0 = R, если d = R — r или d = R + r, и x0 R + r (рис. 288, г). В этом случае говорят, что одна окружность лежит вне другой.

Если неравенства (7) выполнены, то возможны три случая:

3) d = R — r, при этом R > r, поскольку d > 0. Как уже было отмечено, в этом случае x0 = R, поэтому из первого из равенств (5) следует, что y0 = 0. Непосредственной проверкой можно убедиться в том, что пара чисел x = R, у = 0 есть решение системы (4). Таким образом, в данном случае окружности имеют ровно одну общую точку, и их взаимное расположение изображено на рисунке 288, д. Говорят, что окружности касаются изнутри.

4) d = R + r. В этом случае также х0 = R, поэтому y0 = 0, и непосредственно проверяется, что пара чисел x = R, у = 0 есть решение системы (4). Таким образом, в данном случае, как и в случае 3, окружности имеют ровно одну общую точку, но их взаимное расположение иное (рис. 288, е). Говорят, что окружности касаются извне.

5) R — r 2 + у 2 = 9; б) (х — 1) 2 + (у + 2) 2 = 4; в) (х + 5) 2 + (у — 3) 2 = 25; г) (х — 1) 2 + у 2 = 4; д) х 2 + (у + 2) 2 = 2.

960. Какие из точек А (3; -4), В (1; 0), С (0; 5), D (0; 0) и Е (0; 1) лежат на окружности, заданной уравнением:

а) х 2 + у 2 = 25; б) (х — 1) 2 + (у + 3) 2 = 9; в) (х — 0,5) 2 — у 2 = 0,25;

961. Окружность задана уравнением (х + 5) 2 + (у — 1) 2 = 16. Не пользуясь чертежом, укажите, какие из точек А (-2; 4), В (-5; -3), С (-7; -2) и D (1; 5) лежат:

а) внутри круга, ограниченного данной окружностью;
6) на окружности;
в) вне круга, ограниченного данной окружностью.

962. Даны окружность х 2 + у 2 = 25 и две точки А (3; 4) и В (4;-3). Докажите, что АВ — хорда данной окружности.

963. На окружности, заданной уравнением х 2 + у 2 = 25, найдите точки: а) с абсциссой -4; б) с ординатой 3.

964. На окружности, заданной уравнением (x — 3) 2 + (у — 5) 2 = 25, найдите точки: а) с абсциссой 3; б) с ординатой 5.

965. Напишите уравнения окружностей с центром в начале координат и радиусами r1 = 3, r2 = √2, r2 = 5/2.

966. Напишите уравнение окружности радиуса r с центром А, если: а) А (0; 5), r = 3; б) А (-1;2), r = 2; в) А (-3;-7), r = 1/2; г) А (4;-3), r =10.

967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).

968. Напишите уравнение окружности с центром в точке А (0; 6), проходящей через точку В (-3; 2).

969. Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5), N (7; -3); б) М (2; -1), N (4; 3).

970. Напишите уравнение окружности, проходящей через точку А (1;3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5. Сколько существует таких окружностей?

971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и В (0; 9), если известно, что центр окружности лежит на оси ординат.

972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2); б) С (2; 5) и D (5; 2); в) М (0; 1) и N (-4; -5).

а) Уравнение прямой АВ имеет вид ах + by + с = 0. Так как точки А и В лежат на прямой АВ, то их координаты удовлетворяют этому уравнению:

а • 1 + b • (-1) + с = 0, а • (-3) + b • 2 + с = 0,
или а — b + с = 0, -3а + 2b + с = 0.

Из этих уравнений выразим коэффициенты а и b через с: а = 3с, b = 4с. Подставив эти значения в уравнение прямой, получим 3сх + 4су + с = 0. При любом с ≠ 0 это уравнение является уравнением прямой АВ. Сократив на с, запишем искомое уравнение в виде 3х + 4у + 1 = 0.

973. Даны координаты вершин треугольника АВС: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение прямой, содержащей медиану СМ.

974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3;1), С (7; 7) и D (3; 1). Напишите уравнения прямых, содержащих: а) диагонали АС и BD трапеции; б) среднюю линию трапеции.

975. Найдите координаты точек пересечения прямой 3х — 4у + 12 = О с осями координат. Начертите эту прямую.

976. Найдите координаты точки пересечения прямых 4х + 3у — 6 = О и 2х + у — 4 = 0.

977. Напишите уравнения прямых, проходящих через точку М (2; 5) и параллельных осям координат.

978. Начертите прямую, заданную уравнением: а) у = 3; б) х = -2; в) у = -4; г) х = 7.

979. Найдите ординату точки М, лежащей на прямой АВ, если известно, что А (-8; -6), В (-3; -1) и абсцисса точки М равна 5.

980 Напишите уравнения прямых, содержащих стороны ромба, диагонали которого равны 10 см и 4 см, если известно, что его диагонали лежат на осях координат.

Использование уравнений окружности и прямой при решении задач

981. Даны две точки А и В. Найдите множество всех точек, для каждой из которых расстояние от точки А в два раза больше расстояния от точки В.

Введём прямоугольную систему координат так, как показано на рисунке 289,а. Тогда точки А и В имеют координаты А (0; 0), В (а; 0), где а = АВ.

Найдём расстояния от произвольной точки М (х; у) до точек А и В:

Если точка М (х; у) принадлежит искомому множеству, то

AM = 2ВМ, или AM 2 = 4ВМ 2 .

Поэтому её координаты удовлетворяют уравнению

х 2 + у 2 = 4 ((х — а) 2 + у 2 ). (8)

Если же точка М не принадлежит искомому множеству, то её координаты не удовлетворяют этому уравнению.

Следовательно, уравнение (8) и есть уравнение искомого множества точек в выбранной системе координат. Раскрывая скобки и группируя слагаемые соответствующим образом, приводим уравнение (8) к виду

Таким образом, искомым множеством точек является окружность радиуса 2/3a с центром в точке C(4/3a; 0). Эта окружность изображена на рисунке 289, б.

Аналогично можно доказать, что множеством всех точек М, удовлетворяющих условию AM = kBM, где k — данное положительное число, не равное единице, является окружность радиуса с центром в точке

Эти окружности, соответствующие различным значениям k ≠ 1, называют окружностями Аполлония, поскольку они рассматривались ещё древнегреческим математиком Аполлонием в его трактате «О кругах» во II в. до н. э.

Если k = 1, то задача сводится к известной нам задаче о нахождении множества всех точек, равноудалённых от точек А и В. Таким множеством, как мы знаем, является серединный перпендикуляр к отрезку АВ.

982. Точка В — середина отрезка АС, длина которого равна 2. Найдите множество всех точек М, для каждой из которых: a) AM 2 + ВМ 2 + СМ 2 = 50; б) AM 2 + 2ВМ 2 + 3СМ 2 = 4.

983. Даны две точки А и В. Найдите множество всех точек М, для каждой из которых AM 2 + ВМ 2 = k 2 , где k — данное число.

984. Даны две точки А и В. Найдите множество всех точек М, для каждой из которых AM 2 — ВМ 2 = k, где k — данное число.

Введём прямоугольную систему координат так, чтобы точка А была началом координат, а точка В имела координаты (а; 0), где а = АВ. Найдём расстояния от произвольной точки М (х; у) до точек А и В:

Если точка М (х; у) принадлежит искомому множеству, то AM 2 — ВМ 2 = k, поэтому координаты точки М удовлетворяют уравнению х 2 + у 2 — (х — а) 2 — у 2 = k, или 2ах — а 2 — k = 0.

Если же точка М не принадлежит искомому множеству, то её координаты не удовлетворяют этому уравнению. Итак, полученное уравнение является уравнением искомого множества точек. Но этим уравнением определяется прямая, параллельная оси Оу, если а 2 + k ≠ 0, и сама ось Оу, если a 2 + k = 0. Таким образом, искомым множеством точек является прямая, перпендикулярная к прямой АВ.

985. Даны две точки А и B. Найдите множество всех точек М, для каждой из которых ВМ 2 — AM 2 = 2АВ 2 .

986. Дан прямоугольник ABCD. Найдите множество всех точек М, для каждой из которых

(AM 2 + DM 2 ) — (ВМ 2 + СМ 2 ) = 2АВ 2 .

987.* Дан ромб ABCD, диагонали которого равны 2а и 2Ь. Найдите множество всех точек М, для каждой из которых

AM 2 + DM 2 = ВМ 2 + СМ 2 .

Ответы к § 3

960. а) А и С; б) В; в) В и D.

961. а) С; б) В; в) А и D.

963. а) (-4; -3), М;3);б) (4; 3), (-4; 3).

964. а) (3; 0), (3; 10); б) (-2; 5), (8; 5).

965. 1) х 2 + у 2 = 9; 2) х 2 + у 2 = 2; 3)

966. а) х 2 + (у-5) 2 = 9; б) (х + 1) 2 + (y — 2) 2 = 4; в) г) (х — 4) 2 + (y + 3) 2 = 100.

967. х 2 + у 2 = 10.

968. х 2 + (у — 6) 2 = 25.

969. а) (х — 2) 2 + (y — 1) 2 = 41; б) (х — 3) 2 + (у — 1) 2 = 5.

970. (х — 5) 2 + у 2 = 25, (х + 3) 2 + у 2 = 25; две окружности.

971. х 2 + (у — 4) 2 = 25.

972. б) х + у- 7 = 0; в) 3х — 2у + 2 = 0.

973. 7х — у + 3 = 0.

974. а) х — у = 0, у — 1 = 0; б) 3х — 5у + 5 = 0.

977. х = 2 и у = 5.

980. 5х + 2у — 10 = 0, 5х — 2у — 10 = 0, 5х + 2у + 10 = 0, 5х — 2у + 10 = 0 или 2х + 5у- 10 = 0, 2х — 5у -10 = 0, 2х + 5y + 10 = 0, 2х — 5у+ 10 = 0.

982. а) Окружность радиуса 4 с центром В; б) окружность радиуса 1/3 с центром D, лежащим на отрезке ВС, причём BD = 1/3

983. Окружность с центром в точке О радиуса , если k 2 > 2а 2 , и точка О, если k 2 = 2а 2 , где О — середина отрезка АВ и Если k 2 2 , то точек, удовлетворяющих условию задачи, не существует.

985. Серединный перпендикуляр к отрезку АВ’, где В’ и В — точки, симметричные относительно точки А.

986. Прямая ВС. Указание. Выбрать прямоугольную систему координат так, чтобы точки А и В лежали на оси Ох и были симметричны относительно оси Оу.

987. Прямая, проходящая через точку пересечения диагоналей ромба и перпендикулярная к стороне ромба.


источники:

http://infourok.ru/prezentaciya-po-geometrii-uravneniya-okruzhnosti-i-pryamoy-klass-2978180.html

http://tepka.ru/geometriya_7-9/47.html