Видеоурок уравнение состояния идеального газа 10 класс физика

Видеоурок уравнение состояния идеального газа 10 класс физика

1. Что такое механика . смотреть
2. Движение точки тела. Способы описания движения . смотреть
3. Уравнение равномерного прямолинейного движения . смотреть
4. Мгновенная скорость. Сложение скоростей . смотреть
5. Ускорение. Движение с постоянным ускорением. Единица ускорения . смотреть
6. Уравнение движения с постоянным ускорением . смотреть
7. Равномерное движение точки по окружности . смотреть

Динамика

8. Исаак Ньютон . смотреть
9. Первый закон Ньютона. Инерциальные системы отсчета . смотреть
10. Взаимодействие тел. Второй закон Ньютона . смотреть
11. Третий закон Ньютона. Понятие о системе единиц . смотреть

12. Силы в природе. Закон всемирного тяготения . смотреть
13. Первая космическая скорость. Сила тяжести и вес. Невесомость . смотреть
14. Деформация и силы упругости. Закон Гука . смотреть
15. Силы трения между соприкасающимися поверхностями твердых тел . смотреть

Законы сохранения в механике

16. Другая формулировка второго закона Ньютона . смотреть
17. Закон сохранения импульса. Реактивное движение . смотреть

18. Работа силы. Мощность . смотреть
19. Энергия. Кинетическая энергия и её изменение . смотреть
20. Работа силы тяжести. Работа силы упругости. Потенциальная энергия . смотреть
21. Закон сохранения энергии в механике . смотреть

Статика

22. Равновесие тел. Первое условие равновесия твердого тела . смотреть
23. Момент силы. Второе условие равновесия твёрдого тела . смотреть

Молекулярная физика. Тепловые явления

24. Основные положения молекулярно-кинетической теории . смотреть
25. Масса молекул. Количество вещества . смотреть
26. Броуновское движение. Силы взаимодействия молекул . смотреть
27. Строение газообразных, жидких и твердых тел . смотреть
28. Идеальный газ в молекулярно-кинетической теории . смотреть
29. Решение задач на основное уравнение МКТ идеального газа . смотреть
30. Температура и тепловое равновесие. Определение температуры . смотреть
31. Абсолютная температура . смотреть
32. Измерение скоростей молекул газа . смотреть
33. Уравнение состояния идеального газа . смотреть
34. Газовые законы. Изопроцессы . смотреть
35. Насыщенный пар. Зависимость давления пара от температуры . смотреть
36. Влажность воздуха и её измерение . смотреть
37. Строение и свойства кристаллических и аморфных тел . смотреть
38. Внутренняя энергия . смотреть
39. Работа в термодинамике . смотреть
40. Количество теплоты . смотреть
41. Первый закон термодинамики . смотреть
42. Необратимость процессов в природе . смотреть
43. Принципы действия тепловых двигателей. КПД. КПД тепловых двигателей . смотреть

Основы электродинамики

44. Электрический заряд и элементарные частицы . смотреть
45. Электрическое поле. Принцип суперпозиции полей . смотреть
46. Силовые линии электрического поля . смотреть
47. Проводники в электростатическом поле . смотреть
48. Диэлектрики в электростатическом поле. Поляризация диэлектриков . смотреть
49. Потенциальная энергия заряженного тела в электростатическом поле . смотреть
50. Потенциал электростатического поля, разность потенциалов . смотреть
51. Связь между напряженностью электростатического поля и напряжением . смотреть
52. Электроёмкость. Единицы электроёмкости. Конденсаторы . смотреть
53. Электрический ток. Закон Ома для участка цепи . смотреть
54. Электрические цепи. Последовательное и параллельное соединение . смотреть
55. Работа и мощность постоянного тока . смотреть
56. Электродвижущая сила. Закон Ома для полной цепи . смотреть
57. Электрическая проводимость различных веществ . смотреть
58. Электрический ток через контакт полупроводников р и n типов . смотреть
59. Полупроводниковый диод. Транзистор . смотреть
60. Электрический ток в жидкостях. Закон электролиза . смотреть
61. Электрический ток в газах . смотреть

Правила применения уравнения состояния идеальных газов

Идеальный газ — что это за состояние

Идеальный газ — это газ, в котором пренебрегают потенциальным взаимодействием молекул газа между собой. Считается, что молекулы газа не сталкиваются друг с другом, а только со стенками сосуда.

Идеальными считают разреженные газы. Особенно близкими к идеальным считают гелий и водород.

Идеальный газ — это упрощенная математическая модель, широко применяемая для описания свойств и поведения реальных газов при атмосферном давлении и комнатной температуре.

Когда используют модель идеального газа, то предполагается:

  1. Составляющие газ частицы не взаимодействуют друг с другом, то есть их размеры пренебрежимо малы, поэтому в объеме, занятом идеальным газом, нет взаимных столкновений частиц. Частицы идеального газа претерпевают столкновения только со стенками сосудов.
  2. Молекулы газа движутся хаотически, а соударения между молекулами и их удары о стенки сосуда упругие, то есть не приводят к потере энергии в системе.

Таким образом, между частицами газа нет дальнодействующего взаимодействия, например, электростатического и гравитационного. Дополнительное условия упругих столкновений между молекулами и стенками сосуда в рамках молекулярно-кинетической теории приводит к термодинамике идеального газа.

Газ находится в термодинамическом равновесии со стенками сосуда и дополнительно отсутствуют макроскопические потоки вещества.

Тут следует уточнить, что градиенты термодинамических величин могут иметь место, как например, при включении внешнего поля, к примеру, гравитационного.

Таблица 1. Допущения, которые лежат в основе молекулярно-кинетической теории описания физической модели идеального газа.

Особенности, каким уравнением выражается

Соотношение, при котором определяется связь параметров состояния друг с другом, называется уравнением состояния данного тела. В самом простом случае равновесное состояние тела определяется значением следующих параметров:

Масса тела или системы, как правило, известна.

Существует эквивалентная макроскопическая формулировка идеального газа — это такой газ, который одновременно будет подчиняться закону Бойля-Мариотта и Гей-Люссака.

p V = c o n s t * T

Уравнение Менделеева-Клапейрона

Термические свойства классического и квазиклассического идеального газа описываются уравнением состояния идеального газа, которое называется уравнением Менделеева-Клапейрона.

p V = m M R T = n R T , г д е m — м а с с а г а з а , M — м о л я р н а я м а с с а г а з а , R = 8 , 314 Д ж / ( м о л ь * К ) — у н и в е р с а л ь н а я г а з о в а я п о с т о я н н а я , T — т е м п е р а т у р а ( К ) , n — к о л и ч е с т в о м о л е й г а з а .

Также уравнение Клапейрона-Менделеева можно записать в ином виде:

p V = N k T , где N — это количество молекул газа массой m, k = 1 , 38 * 10 — 23 Д ж / К — постоянная Больцмана, которая определяет «долю» газовой постоянной, приходящуюся на одну молекулу и определяется по формуле:

N = m N A M , где

N A = 6 . 02 * 10 23 м о л ь — 1 ; — это постоянная Авогадро.

Правила применения для решения задач

С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса и один трех параметров (давление, температура или объем) остаются неизменными.

Количественные зависимости между двумя параметрами газа при фиксированном третьем параметре называют газовыми законами.

Изопроцессы — это термодинамические процессы, во время протекания которых количество вещества и один из параметров состояния: давление, объем, температура или энтропия — остаются неизменными.

В зависимости от того, какой параметр остается неизменным, различают разные процессы:

  • изотермический процесс (T=const);
  • изохорный процесс (V=const);
  • изобарный процесс (p=const).

Изотермический процесс (T=const)

Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

Для поддержания постоянной температуры газа необходимо, чтобы он мог обмениваться теплотой с большой системой термостатом. Им может служить атмосферный воздух, если температура его заметно не меняется на протяжении всего процесса.

Согласно уравнению Клапейрона-Менделеева, в любом состоянии с неизменной температурой произведение давления газа на объем одно и то же, то есть постоянно:

Этот закон был открыт экспериментально английским ученым Бойлем и несколько позднее французским ученым Мариоттом. Именно поэтому он называется законом Бойля-Мариотта.

Закон Бойля-Мариотта справедлив для любых газов, а также для смеси газов (например, для воздуха).

Зависимость давления газа от объема при постоянной температуре изображается графической кривой — изотермой. Изотерма для различных температур представлена в координатах pV на рис.1. и представляет собой гиперболу.

Рис.1. Изотерма в pV — координатах.

В изотермических условиях проводятся различные физико-химические процессы. Рассмотрим каким образом уравнение состояния идеального газа можно применить в задачах.

При уменьшении давления газа в 2,5 раза его объем увеличился на 12 л. Какой объем занимал газ в начальном состоянии, если температура на протяжении всего процесса оставалась постоянной?

По условию задачи температура в ходе всего процесса оставалась постоянной, откуда следует, что у нас изотермический процесс и мы можем воспользоваться для решения законом Бойля-Мариотта.

p 1 V 1 = p 2 V 2 , где p_1 — давление газа в начальном состоянии (до расширения), V_1 — объем газа в начальном состоянии, p 2 = p 1 2 . 5 — давление газа в конечном состоянии (после расширения), V 2 = V 1 + ∆ V — объем газа в конечном состоянии.

Откуда можем найти начальный объем:

p 1 V 1 = p 1 2 . 5 ( V 1 + ∆ V ) = p 1 2 . 5 V 1 + p 1 2 . 5 ∆ V

V 1 ( p 1 — p 1 2 . 5 ) = p 1 2 . 5 ∆ V

p 1 2 . 5 V 1 ( 2 . 5 — 1 ) = p 1 2 . 5 ∆ V

V 1 = ∆ V 1 , 5 = 8 л

Ответ: первоначальный объем газа был равен 8 л.

Объем пузырька воздуха при всплытии со дна озера на поверхность увеличился в 2 раза. Какова глубина озера?

Так как в условиях не говорится про изменение температуры в ходе данного процесса, то мы принимаем, что это изотермический процесс и можно использовать закон Бойля-Мариотта.

p 1 V 1 = p 2 V 2

Где p 1 = ρ g h + p 0 — давление воздуха внутри пузырька в начальном состоянии (до всплытия), а V 1 — объем газа в начальном состоянии.

p 2 = p 0 — давление воздуха внутри пузырька газа в конечном состоянии (на поверхности водоема).

V 2 = 2 V 1 — объем пузырька воздуха в конечном состоянии.

ρ — плотность воды, h — глубина водоема, p 0 — нормальное атмосферное давление, g = 9 , 8 м / с 2 — ускорение свободного падения.

( ρ g h + p 0 ) V 1 = 2 p 0 V 1

ρ g h + p 0 = 2 p 0

Откуда находим высоту, которая и является глубиной озера:

Берем давление при нормальных условиях в единицах системы СИ, то есть

p 0 = 10 5 П а , ρ ( H 2 O ) = 10 3 к г / м 3 , тогда

h = p 0 ρ g = 10 , 2 м .

Ответ: глубина озера 10,2 м.

Изохорный процесс (V=const)

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

Из уравнения состояния следует, что отношение давлений газа данной массы при постоянном объеме равно отношению его абсолютных температур:

p 1 p 2 = T 1 T 2

Газовый закон был установлен экспериментально в 1787 г. французским физиком Ж. Шарлем и носит название закона Шарля: давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре.

Так, если в качестве одного из состояний газа выбрать состояние газа при нормальных условиях, тогда

p = p 0 T T 0 = p 0 γ T

Коэффициент γ называют температурным коэффициентом давления газа. Он одинаков для всех газов.

Зависимость давления газа от температуры при постоянном объеме графически изображается прямой, которая называется изохорой (Рис.2).

Рис.2 Изображение изохоры в pT-координатах.

Рассмотрим правила применения изохорного режима для решения задач.

Газ находится в баллоне при температуре 400 К. До какой температуры нужно нагреть газ, чтобы его давление увеличилось в 1,5 раза?

Так как нагревание газа по условиям данной задачи происходит при постоянном объеме, значит перед нами изохорный процесс.

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 20. Уравнение состояния идеального газа. Газовые законы

Перечень вопросов, рассматриваемых на уроке:

1) уравнение состояния идеального газа и уравнение Менделеева — Клапейрона;

2) закон Дальтона, парциальное давление, закон Авогадро;

3) газовые законы и границы их применимости;

4) графики изохорного, изобарного и изотермического процесса;

5) определение по графикам характера процессов и макропараметров идеального газа;

6) применение модели идеального газа для описания поведения реальных газов.

Глоссарий по теме

Уравнение, связывающее три макроскопических параметра давление, объём и температура, называют уравнением состояния идеального газа.

Парциальное давление – давление отдельно взятого компонента газовой смеси, равно давлению, которое он будет оказывать, если занимает весь объем при той же температуре.

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами (изопроцессами).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика. 10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 209 – 218.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2009.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

Уравнение Клапейрона при m = const: отношение произведения давления и объёма к температуре есть величина постоянная для постоянной массы газа:

Если изменяется какой-либо макроскопический параметр газа постоянной массы, то два других параметра изменятся таким образом, чтобы указанное соотношение осталось постоянным.

Отношение произведения давления и объёма к температуре равно универсальной газовой постоянной для одного моля идеального газа.

Уравнение Менделеева при v = 1 моль

Произведение постоянной Больцмана и постоянной Авогадро называется универсальной газовой постоянной.

уравнение состояния идеального газа.

Уравнение состояния идеального газа получило название «уравнение Менделеева-Клапейрона».

Давление смеси химически невзаимодействующих газов равно сумме их парциальных давлений: закон Дальтона.

где pi– парциальное давление i-й компоненты смеси.

Парциальное давление – давление отдельно взятого компонента газовой смеси, равное давлению, которое он будет оказывать, если занимает весь объём при той же температуре.

Один моль любого газа при нормальных условиях занимает один и тот же объём равный:

V0=0,0224м 3 /моль=22,4дм 3 /моль.

Это утверждение называется законом Авогадро

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами (изопроцессами).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим.

Для газа данной массы произведение давления на объём постоянна, если температура газа не меняется — закон Бойля – Мариотта.

Изотерма соответствующая более высокой температуре T1, лежит на графике выше изотермы, соответствующей более низкой температуре T2.

Если значения давления и температуры в различных точках объёма разные, то в этом случае газ находится в неравновесном состоянии.

Равновесное состояние — это состояние, при котором температура и давление во всех точках объёма одинаковы.

Процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении называют изобарным.

Для газа данной массы отношение объема к температуре постоянно, если давление не изменяется — закон Гей-Люссака.

Изобара соответствующая более высокому давлению p2 лежит на графике ниже изобары соответствующей более низкому давлению p1.

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным.

При данной массе газа отношение давление газа к температуре постоянно, если объем газа не изменяется — закон Шарля.

Изохора соответствующая большему объему V2 лежит ниже изохоры, соответствующей меньшему объему V1.

Примеры и разбор решения заданий

1. Установите соответствие между физическими величинами и приборами для их измерения. К каждой позиции первого столбца подберите нужную позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


источники:

http://wika.tutoronline.ru/fizika/class/10/pravila-primeneniya-uravneniya-sostoyaniya-idealnyh-gazov

http://resh.edu.ru/subject/lesson/6292/conspect/

Допущения для описания модели идеального газа
1Размеры молекул пренебрежимо малы по сравнению со средним расстоянием между ними, так что суммарный объем, занимаемый молекулами, много меньше объема сосуда.
2Импульс передается только при соударениях, то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях молекул друг с другом.
3Соударение частиц между собой и со стенками сосуда абсолютно упругие.
4Количество молекул в газе велико и фиксировано, что позволяет вычислять средние величины по малому (по сравнению с размерами системы) объему.
5