Виды неполных уравнений прямой на плоскости

Уравнение прямой, виды уравнения прямой на плоскости.

Эта статья является продолжением раздела прямая на плоскости. Здесь мы перейдем к алгебраическому описанию прямой линии с помощью уравнения прямой.

Материал данной статьи является ответом на вопросы: «Какое уравнение называют уравнением прямой и какой вид имеет уравнение прямой на плоскости»?

Навигация по странице.

Уравнение прямой на плоскости — определение.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и в ней задана прямая линия.

Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.

Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y , которое обращается в тождество при подстановке в него координат любой точки этой прямой.

Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач и способом задания прямой линии на плоскости. Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.

Общее уравнение прямой.

Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.

Всякое уравнение первой степени с двумя переменными x и y вида , где А , В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и всякая прямая на плоскости задается уравнением вида .

Уравнение называется общим уравнением прямой на плоскости.

Поясним смысл теоремы.

Заданному уравнению вида соответствует прямая на плоскости в данной системе координат, а прямой линии на плоскости в данной системе координат соответствует уравнение прямой вида .

Посмотрите на чертеж.

С одной стороны можно сказать, что эта линия определяется общим уравнением прямой вида , так как координаты любой точки изображенной прямой удовлетворяют этому уравнению. С другой стороны, множество точек плоскости, определяемых уравнением , дают нам прямую линию, приведенную на чертеже.

Общее уравнение прямой называется полным, если все числа А , В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным. Неполное уравнение прямой вида определяют прямую, проходящую через начало координат. При А=0 уравнение задает прямую, параллельную оси абсцисс Ox , а при В=0 – параллельную оси ординат Oy .

Таким образом, любую прямую на плоскости в заданной прямоугольной системе координат Oxy можно описать с помощью общего уравнения прямой при некотором наборе значений чисел А , В и С .

Нормальный вектор прямой, заданной общим уравнением прямой вида , имеет координаты .

Все уравнения прямых, которые приведены в следующих пунктах этой статьи, могут быть получены из общего уравнения прямой, а также могут быть обратно приведены к общему уравнению прямой.

Рекомендуем к дальнейшему изучению статью общее уравнение прямой. Там доказана теорема, сформулированная в начале этого пункта статьи, приведены графические иллюстрации, подробно разобраны решения примеров на составление общего уравнения прямой, показан переход от общего уравнения прямой к уравнениям другого вида и обратно, а также рассмотрены другие характерные задачи.

Уравнение прямой в отрезках.

Уравнение прямой вида , где a и b – некоторые действительные числа отличные от нуля, называется уравнением прямой в отрезках. Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами и , и с помощью линейки соединить их прямой линией.

Для примера построим прямую линию, заданную уравнением в отрезках вида . Отмечаем точки и соединяем их.

Детальную информацию об этом виде уравнения прямой на плоскости Вы можете получить в статье уравнение прямой в отрезках.

Уравнение прямой с угловым коэффициентом.

Уравнение прямой вида , где x и y — переменные, а k и b – некоторые действительные числа, называется уравнением прямой с угловым коэффициентом ( k – угловой коэффициент). Уравнения прямой с угловым коэффициентом нам хорошо известны из курса алгебры средней школы. Такой вид уравнения прямой очень удобен для исследования, так как переменная y представляет собой явную функцию аргумента x.

Определение углового коэффициента прямой дается через определение угла наклона прямой к положительному направлению оси Ox .

Углом наклона прямой к положительному направлению оси абсцисс в данной прямоугольной декартовой системе координат Oxy называют угол , отсчитываемый от положительного направления оси Ох до данной прямой против хода часовой стрелки.

Если прямая параллельна оси абсцисс или совпадает с ней, то угол ее наклона считают равным нулю.

Угловой коэффициент прямой есть тангенс угла наклона этой прямой, то есть, .

Если прямая параллельна оси ординат, то угловой коэффициент обращается в бесконечность (в этом случае также говорят, что угловой коэффициент не существует). Другими словами, мы не можем написать уравнение прямой с угловым коэффициентом для прямой, параллельной оси Oy или совпадающей с ней.

Заметим, что прямая, определяемая уравнением , проходит через точку на оси ординат.

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением вида . Эта прямая проходит через точку и имеет наклон радиан ( 60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Отметим, что уравнение касательной к графику функции в точке очень удобно искать именно в виде уравнения прямой с угловым коэффициентом.

Рекомендуем продолжить изучение этой темы в разделе уравнение прямой с угловым коэффициентом. Там представлена более подробная информация, приведены графические иллюстрации, детально разобраны решения характерных примеров и задач.

Каноническое уравнение прямой на плоскости.

Каноническое уравнение прямой на плоскости в прямоугольной декартовой системе координат Oxy имеет вид , где и – некоторые действительные числа, причем и одновременно не равны нулю.

Очевидно, что прямая линия, определяемая каноническим уравнением прямой, проходит через точку . В свою очередь числа и , стоящие в знаменателях дробей, представляют собой координаты направляющего вектора этой прямой. Таким образом, каноническое уравнение прямой в прямоугольной системе координат Oxy на плоскости соответствует прямой, проходящей через точку и имеющей направляющий вектор .

Для примера изобразим на плоскости прямую линию, соответствующую каноническому уравнению прямой вида . Очевидно, что точка принадлежит прямой, а вектор является направляющим вектором этой прямой.

Каноническое уравнение прямой вида используют даже тогда, когда одно из чисел или равно нулю. В этом случае запись считают условной (так как содержится ноль в знаменателе) и ее следует понимать как . Если , то каноническое уравнение принимает вид и определяет прямую, параллельную оси ординат (или совпадающую с ней). Если , то каноническое уравнение прямой принимает вид и определяет прямую, параллельную оси абсцисс (или совпадающую с ней).

Детальная информация об уравнении прямой в каноническом виде, а также подробные решения характерных примеров и задач собраны в статье каноническое уравнение прямой на плоскости.

Параметрические уравнения прямой на плоскости.

Параметрические уравнения прямой на плоскости имеют вид , где и – некоторые действительные числа, причем и одновременно не равны нулю, а — параметр, принимающий любые действительные значения.

Параметрические уравнения прямой устанавливают неявную зависимость между абсциссами и ординатами точек прямой линии с помощью параметра (отсюда и название этого вида уравнений прямой).

Пара чисел , которые вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра , представляет собой координаты некоторой точки прямой. К примеру, при имеем , то есть, точка с координатами лежит на прямой.

Следует отметить, что коэффициенты и при параметре в параметрических уравнениях прямой являются координатами направляющего вектора этой прямой.

Для примера приведем параметрические уравнения прямой вида . Эта прямая в прямоугольной системе координат Oxy на плоскости проходит через точку с координатами и имеет направляющий вектор .

В статье параметрические уравнения прямой на плоскости Вы можете ознакомиться с подробным решением примеров и задач по этой теме.

Нормальное уравнение прямой.

Если в общем уравнении прямой вида числа А , В и С таковы, что длина вектора равна единице, а , то это общее уравнение прямой называется нормальным уравнением прямой. Нормальное уравнение прямой определяет в прямоугольной системе координат Oxy прямую линию, нормальным вектором которой является вектор , причем эта прямая проходит на расстоянии от начала координат в направлении вектора .

Часто можно видеть другую форму записи нормального уравнения прямой: , где и — действительные числа, представляющие собой направляющие косинусы нормального вектора прямой единичной длины (то есть, и справедливо равенство ), а величина p () равна расстоянию от начала координат до прямой.

Для примера приведем общее уравнение прямой . Это общее уравнение прямой является нормальным уравнением прямой, так как и . Оно в прямоугольной системе координат Oxy на плоскости задает прямую линию, нормальный вектор которой имеет координаты , и эта прямая удаленна от начала координат на 3 единицы в направлении нормального вектора .

Отметим, что уравнение прямой в нормальном виде позволяет находить расстояние от точки до прямой на плоскости.

Если в общем уравнении прямой числа А , В и С таковы, что уравнение не является нормальным уравнением прямой, то его можно привести к нормальному виду. Об этом читайте в статье нормальное уравнение прямой.

Общее уравнение прямой на плоскости. Неполные уравнения прямой

Общее уравнение прямой: Ax + By + C = 0. Этим уравнением можно задать любую прямую. Коэффициенты А, В, С при этом определяются не однозначно, а с точностью до пропорциональности.

Уравнение Ax + By + C = 0 называется неполным уравнением прямой на плоскости, если хотя бы один из его коэффициентов А, В, С равен нулю.

Если коэффициент B = 0, A ≠ 0 ≠ C , то из уравнения Ax + By + C = 0 следует x = — C / A = a. Это уравнение прямой, параллельной оси Оу, отсекающей от оси Ох отрезок величиной а.

Если коэффициент A = 0, B ≠ 0 ≠ C то из уравнения Ax + By + C = 0 следует y = — C / B = b. Это уравнение прямой, параллельной оси Ох, отсекающей от оси Оу отрезок величиной b.

Если C = 0, то уравнение Ax + By + C = 0 принимает вид Ax + By = 0. Ясно, что эта прямая проходит через начало координат.

Если в уравнении Ax + By = 0 коэффициент B ≠ 0 , то отсюда получаем y = — x. Обозначив через

k = — , получаем уравнение, которое носит название уравнения прямой с угловым коэффициентом

Если в уравнении Ax + By = 0 A ≠ B = 0, то Ax = 0 и, сокращая на А, получаем уравнение оси Оу: x = 0.

Если в уравнении Ax + By = 0 B ≠ A = 0, то By = 0 и, сокращая на В, получаем уравнение оси Ох: y = 0.

Подведем итог исследования общего уравнения прямой Ax + By + C = 0:

1) Если A ≠ 0, B ≠ 0, C ≠ 0 , то уравнение Ax + By + C = 0 может быть записано в виде уравнения прямой в отрезках: x /a + y / b = 1 – прямая, отсекающая от осей координат отрезки величиной а и b соответственно.

2) Если A = 0, B ≠ 0, C ≠ 0, то уравнение может быть записано в виде: y = b – прямая параллельная оси Ох и отсекающая от оси Оу отрезок величины b.

3) Если A ≠ 0, B = 0, C ≠ 0, то уравнение может быть записано в виде: x = a – прямая параллельная оси Оу и отсекающая от оси Ох отрезок величины а.

4) Если A = 0, B ≠ 0, C = 0, то уравнение прямой имеет вид: y = 0 – прямая совпадает с осью Ох.

5) Если A ≠ 0, B = 0, C = 0, то уравнение прямой имеет вид: x = 0 – прямая совпадает с осью Оу.

6) Если A ≠ 0, B ≠ 0, C = 0, то уравнение может быть записано в виде: y = k * x – уравнение прямой с угловым коэффициентом.

17. Общее уравнение прямой на плоскости. Уравнение прямой в «отрезках» (с выводом)

Общее уравнение прямой: Ax + By + C = 0. Этим уравнением можно задать любую прямую. Коэффициенты А, В, С при этом определяются не однозначно, а с точностью до пропорциональности.

Уравнение прямой в отрезках: + = 1.Здесь знаменатели а и b – это координаты точек пересечения прямой с соответствующими координатными осями. С помощью такого уравнения невозможно задать прямую, проходящую через начало координат или параллельную одной из осей.

Пусть ни один из коэффициентов А, В, С общего уравнения прямой Ax + By + C = 0, не равен нулю. Перенесем свободный член С в правую часть уравнения и разделим обе части уравнения на (– С):

.

Обозначим . Тогда последнее уравнение можно записать в виде: : + = 1 – это уравнение прямой в отрезках

Для построения прямой достаточно взять две точки на этой прямой. Для построения прямой в отрезках удобно найти ее точки пересечения с координатными осями:

М(а, 0) – точка пересечения прямой : + = с осью Ох и

N(0, b) – точка пересечения прямой : + = с осью Оу.

Говорят, что прямая отсекает от координатных осей отрезки ОМ и ОN величина которых равна числам а и b соответственно. Под величиной отрезка ОА здесь понимается не его длина , а координата точки М, т.е. число а. Аналогично, величина отрезка ОN равна числу b.

Неполные уравнения плоскости

Уравнения прямой на плоскости

Прямая на плоскости и в пространстве.. Взаимосвязь различных видов уравнений прямой.

Рассмотрим различные виды уравнений прямой на плоскости.

Пусть прямая проходит через точку М0 (x0,y0) перпендикулярно вектору n = >. Тогда вектор , где М(х,у) — произвольная точка прямой, ортогонален n. Поэтому координаты любой точки данной прямой удовлетворяют уравнению

уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.

Замечание. Вектор n называется нормалью к прямой.

Преобразуем уравнение (7.3) к виду:

Обозначив -Ах0 — Ву0 = С, получим общее уравнение прямой:

Ах + Ву + С = 0. (7.4)

Получим теперь уравнение прямой, проходящей через точку М0 (x0,y0) параллельно вектору q = >. Так как вектор , где М(х,у) — произвольная точка прямой, коллинеарен q, координаты любой точки данной прямой удовлетворяют уравнению

называемому каноническим уравнением прямой. Вектор q при этом называется направляющим вектором прямой. В частности, если прямая проходит через точки М111) и М222), ее направляющим вектором можно считать , и из уравнения (7.5) следует:

параметрические уравнения прямой.

Для прямой l, не параллельной оси Оу, можно ввести так называемый угловой коэффициент k — тангенс угла, образованного прямой и осью Ох, и записать уравнение

у l прямой в виде:

Прямая и плоскость в пространстве. Уравнения плоскости и прямой в пространстве. Угол между плоскостями. Угол между прямой и плоскостью.

Отметим, что многие утверждения и формулы, касающиеся плоскости в пространстве, доказываются и выводятся так же, как при изучении прямой на плоскости, поэтому в этих случаях будут даваться ссылки на предыдущую лекцию.

Плоскость в пространстве.

Получим сначала уравнение плоскости, проходящей через точку М000 ,z0) перпендикулярно вектору n= <A,B,C>,называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z) вектор М0М = <x — x0 , y — y0 , z — z0) ортогонален вектору n, следовательно, их скалярное произведение равно нулю:

Получено уравнение, которому удовлетворяет любая точка заданной плоскости — уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.

После приведения подобных можно записать уравнение (8.1) в виде:

Ax + By + Cz + D = 0, (8.2)

где D = -Ax0 — By0 — Cz0. Это линейное уравнение относительно трех переменных называют общим уравнением плоскости.

Неполные уравнения плоскости.

Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.

Рассмотрим возможные виды неполных уравнений:

1) D = 0 — плоскость Ax + By + Cz = 0 проходит через начало координат.

2) А = 0 — n = <0,B,C>Ox, следовательно, плоскость By + Cz + D = 0 параллельна оси Ох.

3) В = 0 — плоскость Ax + Cz +D = 0 параллельна оси Оу.

4) С = 0 — плоскость Ax + By + D = 0 параллельна оси Оz.

5) А = В = 0 — плоскость Cz + D = 0 параллельна координатной плоскости Оху (так как она параллельна осям Ох иОу).

6) А = С = 0 — плоскость Ву + D = 0 параллельна координатной плоскости Охz.

7) B = C = 0 — плоскость Ax + D = 0 параллельна координатной плоскости Оуz.

8) А = D = 0 — плоскость By + Cz = 0 проходит через ось Ох.

9) B = D = 0 — плоскость Ах + Сz = 0 проходит через ось Оу.

10) C = D = 0 — плоскость Ax + By = 0 проходит через ось Oz.

11) A = B = D = 0 — уравнение Сz = 0 задает координатную плоскость Оху.

12) A = C = D = 0 — получаем Ву = 0 — уравнение координатной плоскости Охz.

13) B = C = D = 0 — плоскость Ах = 0 является координатной плоскостью Оуz.

Если же общее уравнение плоскости является полным ( то есть ни один из коэффициентов не равен нулю), его можно привести к виду: (8.3) называемому уравнением плоскости в отрезках. Способ преобразования показан в лекции 7. Параметры а, b и сравны величинам отрезков, отсекаемых плоскостью на координатных осях.

Всякая плоскость в пространстве, снабженном декартовой системой координат, есть множество вех точек, удовлетворяющих некоторому линейному уравнению вида:

Всякую плоскость в пространстве можно задать, указав какую – ни будь ее точку и два произвольных приложенных к этой точке неколлинеарных вектора: и .

-векторноеур-е плоскости.

(7)- Уравнение (7) называют уравнением плоскости в отрезках на осях, т.к. числа a, b, c имеют простой геометрический смысл: а — абсцисса точки пересечения плоскости с осью Ох, b — ордината точки пересечения плоскости с осью Оу, с — аппликата точки пересечения плоскости с осью Oz.

-параметрическое уравнение прямой :

где — фиксированная точка, лежащая на прямой; -направляющий вектор.

— это называют уравнениями прямой, проходящей через две заданные точки и .

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями:

=

3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a(m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

ВИДЫ УРАВНЕНИЯ ПРЯМОЙ НА ПЛОСКОСТИ:

Уравнение прямой с угловым коэффициентом:y= kx + b

Уравнение прямой в отрезках:

Общее уравнение прямой:

Уравнение с данным направляющим вектором и проходящей через данную точку:

Уравнение прямой с данным вектором нормали

и проходящей через данную точку:

Билет 23. Взаимное расположение плоскостей

Возможны два случая взаимного расположения двух плоскостей в пространстве:

Опр. Две плоскости в пространстве называются параллельными, если они не пересекаются, в противном случае они пересекаются.

Теорема1:Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Пусть и – данные плоскости, а1 и а2 — прямые в плоскости , пересекающиеся в точке А, в1 и в2 – соответственно параллельные им прямые в

плоскости . Допустим, что плоскости и не параллельны, т.е. пересекаются по некоторой прямой с. По теореме прямые а1 и а2, как параллельные прямым в1и в2, параллельны плоскости , и поэтому они не

пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости через точку А проходят две прямые (а1 и а2) , параллельные прямой с. Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.

Перпендикулярные плоскости: Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Теорема2: Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Пусть — плоскость, в –перпендикулярная ей прямая, — плоскость, проходящая через прямую в, с — прямая, по которой пересекаются плоскости и . Докажем, что плоскости и перпендикулярны. Проведем в плоскости через точку пересечения прямой в с плоскостью прямую а, перпендикулярную прямой с. Проведем через прямые а и в плоскость . Она перпендикулярна прямой с, т.к.прямая с перпендикулярна прямым а и в. Т. к. прямые а и в перпендикулярны, то плоскости и перпендикулярны. ч.т.д.

Необходимым и достаточным условием пересечения двух плоскостей (4.22) является условие не коллинеарности их нормалей, или, что то же самое, условие непропорциональности коэффициентов при неизвестных:

При этом условии система уравнений имеет бесконечно много решений, которые определяют прямую пересечения плоскостей, заданных уравнениями.

Угол между двумя плоскостями можно определить как угол между их нормальными векторами. Поэтому определению получаются не один угол, а два смежных угла, дополняющих друг друга до В элементарной геометрии из двух смежных углов, как правило, выбирается меньший, т.е.величина угла между двумя плоскостями удовлетворяет условию Если — нормали к плоскостям и соответственно (рис.4.20,а), то величина угла между этими плоскостями вычисляется по формуле:

Билет 24.Взаимное расположение прямых

Две прямые в пространстве могут пересекаться, скрещиваться и могут быть параллельны. Прямые заданы уравнениями и

Пересекающимися прямым и называются такие прямые, которые имеют одну общую точку.

2. Параллельные прямые

Параллельные прямые – прямые, пересекающиеся в несобственной точке (прямые, лежащие в одной плоскости и пересекающиеся в бесконечно удаленной точке). .

3. Скрещивающиеся прямые

Скрещивающиеся прямые – это прямые, не лежащие в одной плоскости, это прямые не имеющие ни одной общей точки. .

Билет 25. Задачина прямую и плоскость

Довольно часто встает следующая задача.Требуется от общих уравнений прямой перейти к параметрическим, которые в некотором смысле являются более удобными. Для того, чтобы написать параметрические уравнения прямой нужно знать координаты какой-нибудь точки на прямой и координаты направляющего вектора. Прямая задана уравнениями Требуется написать ее параметрические уравнения. Найдем какую-нибудь точку на прямой. Положим .Система примет вид Решая ее, находим , .

Таким образом, на прямой лежит точка .Найдем направляющий вектор. Нормальными векторами плоскостей, соответствующих уравнениям системы ,являются , . Положим . Тогда

Теперь, зная точку и направляющий вектор, можно написать параметрические уравнения прямой.

Следующая, часто встречающаяся, задача такая:

Дано уравнение плоскости и уравнения прямой. Требуется найти их точку пересечения.

Так как точка пересечения принадлежит и прямой, и плоскости, то она удовлетворяет и уравнению плоскости, и уравнениямпрямой. Поэтому для решения задачи нужно объединить уравнение плоскости и уравнения прямой в одну систему и решить ее.

ПримерНайдите точку пересечения прямой и плоскости . Прямая задана каноническими уравнениями. Им соответствует система уравнений В результате для нахождения точки пересечения прямой и плоскости получаем систему уравнений Для ее решения можно предложить следующий путь. Из первого уравнения выражаем через : . Из второго — через : . Найденные выражения для и подставляем в третье уравнение и находим .Находим и : , .

Даны уравнения двухпрямых. Требуется найти угол между этими прямыми.

Следующие две задачи связаны с нахождением угла. Угол между прямыми – это угол между их направляющими векторами, если направляющие векторы образуют острый угол ,или , если — тупой угол . Во втором случае .Для решения задачи достаточно найти направляющие векторы и прямых. Тогда а искомый угол определяется из равенства

Билет 26. Расстояние от точки до плоскости

Пусть плоскость задана уравнением и дана точка .Тогда расстояние от точки до плоскости определяется по формуле

Доказательство. Расстояние от точки до плоскости — это, по определению, длина перпендикуляра ,опущенного из точки на плоскость

Вектор и нормальный вектор nплоскости параллельны, то есть угол между ними равен 0 или ,если вектор nимеет направление противоположное, указанному на рис. 11.9. Поэтому Откуда Координаты точки ,которые нам неизвестны, обозначим . Тогда .Так как ,то . Раскрыв скобки и перегруппировав слагаемые, получим Точка лежит на плоскости ,поэтому ее координаты удовлетворяют уравнению плоскости: . Отсюда находим, что .

27,28,29.Кривые второго порядка на плоскости: эллипс и его свойства

Кривые второго порядка на плоскости: гипербола и ее свойства

Кривые второго порядка на плоскости: парабола и ее свойства


источники:

http://mydocx.ru/4-88096.html

http://lektsii.org/6-52455.html