Виды уравнений и неравенств с модулем

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Методы решения уравнений и неравенств с модулем

Методы решения уравнений и неравенств с модулем

Цели. Целью моей работы является классификация методов решения уравнений и неравенств, содержащих переменную под знаком модуля (абсолютной величины). Данное исследование возникло из необходимости обобщить все знания по этой теме для проникающего повторения при подготовке к Единому Государственному Экзамену в 10 – 11 классах. В результате исследования мне удалось выделить три основных метода, которые являются универсальными для решения уравнений (неравенств) своего типа, а так же, были выявлены частные случаи этих методов, упрощающие общую схему решения.

Считаю, что данная работа будет полезна ученикам 11-х классов.

Типы уравнений (неравенств) и методы их решения:

I. Простейшие – уравнения и неравенства вида

|f(x)| = a, |f(x)| a, где а – любое число.

При решении простейших уравнений и неравенств исходим из определения модуля, как расстояния от нуля до числа, выраженного в единичных отрезках.

1. Рассмотрим уравнения вида | f(x)| = a:

Решение неравенства – множество значений f(х) «между» числами а и – а:

двойное неравенство — a а ():

б). Если а = 0, то |f(x)| > 0. Тогда , т. к. |f(x)| 0.

(|f(x)|0. Решение: (см. выше)).

|f(x)| > a Решение неравенства: множество значений х «за» числами а и – а.

1.| x+2| = 3

2.

Ответ: x = 3, x = -1.

3., тогда или

.

Ответ: (-∞;1 ).

4. | x2 +5x | ≥ 6,

Ответ: (-∞;-6][-3;-2] [1;+ ∞).

    |f(x)| = f(x) f(x) ≥ 0 Решение уравнения – решение неравенства. |f(x)| = — f(x) f(x) ≤ 0. |f(x)|=|g(x)|

1.

x = 1, x =3.

2.| x2 – 1| = (x – 1)(x + 1),

Ответ: (-∞; — 1] [1;+ ∞).

II. По определению модуля.

Если в уравнении или неравенстве один модуль и функция (|f(x)| * g(x)), то решаем по определению модуля:

|f(x)|=

Для этого нужно рассмотреть два случая, раскрывая модуль, в зависимости от знака подмодульного выражения Изменения происходят только в части, содержащей модуль.

1. 2|x +1|>x+4,

Ответ:

2.

Ответ: x = 1, x = —

Данное равенство возможно, только если . Тогда:

Только для уравнений, в которых g(x) проще f(x).

1.

Ответ: x = 1, x = 6.

III. Метод интервалов

А) В случае, когда в уравнении или неравенстве сумма (разность) нескольких модулей.

1.

1.Приведем подмодульные выражения к виду ax + b, где a > 0, по свойству . .

2.Найдем нули модулей: х = — 1, х = 4.

3.Отметим нули модулей на числовом луче и выделим числовые промежутки.

4.Заполним таблицу и расставим знаки, используя свойство линейной функции y = kx + b при k>0 (возрастающая функция, при переходе через ноль знак меняется с « — » на « + »).

5. Решим уравнения (неравенства) на каждом из участков, раскрывая модуль с учетом знака подмодульного выражения.

1. x 5.

Объединяем решения всех случаев, тогда x(-

Ответ: (-

2.Существуют уравнения этого типа (в тестах!), условие которых позволяет сократить количество рассматриваемых случаев, но для этого надо внимательно исследовать подмодульные выражения.

данное равенство возможно только, если , т. е. когда , .

Значит, и

Тогда рассматриваем только один случай:

Ответ:

Так как обе части уравнения (неравенства) — неотрицательные числа, то можно возвести обе части в квадрат. Тогда получим:

f2(x) * g2(x) или f2(x) — g2(x) * 0 – это разность квадратов, можно разложить на множители.

(Очень эффективно, когда функции сложно заданы!)

    | x2 — 3x + 2| ≥ | x2 + 3x + 2|,

(x2 — 3x +x2 + 3x + 2) 2 ≥ 0,

(x2 — 3x + 2 — x2 — 3x – 2)∙(x2 — 3x + 2 + x2 + 3x + 2) ≥ 0,

— 6x∙(2×2 + 4) ≥ 0, т. к. 2×2 + 4 > 0, то получим:

Б). Произведение или частное сравнивается с нулем.

    x∙

1.Найдем нули всех множителей: х =0, х = — 1.

2.Учтем, что ноль модуля не является знакоменяющей точкой, т. к. («лепесток»).

3.Расставим в промежутках знаки, чередуя их, и в лепестках тоже, начиная с самого правого (рис. 4).

4.Выберем промежутки соответственно знаку неравенства: «больше» — c « + »,

Ответ: <- 1>.

Нули числителя: x=0 (●).

Нули знаменателя: x=1, «лепесток» (○).

Ответ: .

Проделанная мной работа позволила мне привести в систему мои знания по этой теме, что необходимо каждому старшекласснику для успешной сдачи Единого Государственного Экзамена. Кроме того, я открыла для себя новые схемы решения уравнений и неравенств с модулями, которые значительно облегчают процесс решения и позволяют сократить время, требуемое для выполнения задания. Расширила знания по работе с компьютерной программой Microsoft Word, выходящие за рамки простого набора текста, что необходимо каждому современному человеку.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение уравнений и неравенств с модулями.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x

Введите уравнение или неравенство с модулями
Решить уравнение или неравенство

Немного теории.

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \( |x-a| \) — это расстояние на числовой прямой между точками x и a: \( |x-a| = \rho (x;\; a) \). Например, для решения уравнения \( |x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \( x_1=1 \) и \( x_2=5 \).

Решая неравенство \( |2x+7| 0 \), то уравнение \( |f(x)|=c \) равносильно совокупности уравнений: \( \left[\begin f(x)=c \\ f(x)=-c \end\right. \)
2) Если \( c > 0 \), то неравенство \( |f(x)| c \) равносильно совокупности неравенств: \( \left[\begin f(x) c \end\right. \)
4) Если обе части неравенства \( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, \(x_1=-1, \; x_2=3 \).

Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию \( 2\rho(x; \;2)+ \rho(x; \;-3) =8 \) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).

Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка \( M_1(x) \) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка \( M_2(x) \) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.

Пусть теперь требуется решить неравенство \( |f(x)| |f(x)| \). Отсюда сразу следует, что \( g(x) > 0 \). Воспользуемся тем, что при \( g(x) > 0 \) неравенство \( |f(x)| 0, \\ -g(x) 0 \\ f(x) -g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) > 0 \) обе части неравенства \( |f(x)| 0 \\ (f(x))^2 0 \\ x^2 — 3x + 2 -(2x — x^2) \end\right. \)
Решая эту систему, получаем:
\( \left\<\begin x(x — 2) 0 \\ (x^2 — 3x + 2)^2 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0<,>5 \end\right. \)
Из последней системы находим: \( 0<,>5 g(x) \). Освободиться от знака модуля можно тремя способами.

Первый способ
Если \(f(x) \geqslant 0\), то \( |f(x)| = f(x) \) и заданное неравенство принимает вид \( f(x) > g(x) \).
Если \(f(x) g(x) \).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ f(x) > g(x) \end\right. \) \( \left\<\begin f(x) g(x) \end\right. \)

Второй способ.
Рассмотрим два случая: \( g(x) \geqslant 0, \; g(x) g(x) \) выполняется для всех x из области определения выражения f(x).
Если \( g(x) \geqslant 0 \), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство \( |f(x)| > g(x) \) равносильно совокупности неравенств \( f(x) g(x) \).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
\( \left\<\begin g(x) g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) \geqslant 0 \) неравенство \( |f(x)| > g(x) \) равносильно неравенству \( (|f(x)|)^2 > (g(x))^2 \). Это позволит свести неравенство \( |f(x)| > g(x) \) к совокупности систем:
\( \left\<\begin g(x) (g(x))^2 \end\right. \)

ПРИМЕР 5. Решить неравенство \( |x^2 — 3x + 2| \geqslant 2x — x^2 \)

Первый способ
Задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin x^2 — 3x + 2 \geqslant 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2 \end\right. \) \( \left\<\begin x^2 — 3x + 2 0 \), то заданное неравенство равносильно совокупности двух неравенств:
\( \left[\begin x^2 — 3x + 2 \geqslant 2x — x^2 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Таким образом, получаем совокупность неравенства и двух систем неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2; \end\right. \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решив первую систему, получим: \( 0 0 \), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ (x^2 — 3x + 2)^2 \geqslant (2x — x^2)^2 \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решая систему, получаем последовательно:
\( \left\<\begin x(x — 2)


источники:

http://pandia.ru/text/78/434/38889.php

http://www.math-solution.ru/math-task/modules-equality-inequality