Виды уравнений и примеры решения

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

«Виды уравнений и способы их решения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Доклад по математике на тему:

«Виды уравнений и способы их решения»

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположила материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попыталась показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стала ограничиваться только действительным решением, но и указала комплексное, так как считаю, что иначе уравнение просто не законченно. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений.

Математика. выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

1. УРАВНЕНИЯ. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв). Для записи тождества наряду со знаком также используется знак .

Пример: 5 *7 – 6 = 20 + 9

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,,c, . – или теми же буквами, снабженными индексами:, , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита:x, y, z. По числу неизвестных уравнения разделяются на уравнения с одним, двумя, тремя и т. д. неизвестными

Решением уравнения называют такой буквенный или числовой набор неизвестных, которые обращает его в тождество (соответственно числовое или буквенное). Часто решение уравнения называют его также его корнем.

1.1. Линейное уравнение

Линейным уравнением с одним неизвестным называют уравнение вида

ax + b = c, где a ≠ 0

Это уравнение имеет единственное решение:

1.2 Квадратное уравнение

Квадратным уравнением с одним неизвестным называют уравнение вида

a + bx + c = 0, где a ≠ 0

Дискриминантом квадратного уравнения называют число D =

Справедливы следующие утверждения

1. Если D 0 , то уравнение решений не имеет

2. Если D = 0 , то уравнение имеет единственное решение

3. Если D 0, то уравнение имеет 2 решения

1.2.1 Неполное квадратное уравнение

Неполным квадратным уравнением называют квадратное уравнение, в котором хотя бы один из коэффициентов b или c равен нулю.

При c =0, уравнение принимает вид:

a+ bx = 0 или x (ax + b) = 0

т.е. либо х=0, либо ax + b = 0, откуда х=0,

При b =0, уравнение принимает вид: a+ c = 0

если выражение 0, то уравнение решений не имеет

если с=0, то уравнение имеет единственное решение: х=0

если выражение, 0,то решений два:

1.2.2 Приведённое квадратное уравнение. Теорема Виета

Приведённым квадратным уравнением называют уравнение вида

т.е. квадратное уравнение, в котором первый коэффициент равен единице.

Любое квадратное уравнение можно сделать приведённым. Для этого достаточно каждый коэффициент данного уравнения разделить на первый коэффициент, т.е. на а

Теорема Виета : Если приведённое квадратное уравнение имеет действительные корни, то их сумма равна второму коэффициенту, взятому со знаком минус, т.е. –p, а их произведение- свободному члену q.

Теорема, обратная теореме Виета : Если сумма двух чисел и равна числу –p, а их произведение равно числу q, то они являются корнями приведённого квадратного уравнения + px + q =0

Пример: Используя теорему, обратную теореме Виета, найти корни уравнения

Это уравнение имеет целые корни, Корни легко угадать: это действительно: (-1) * (-2) = 2 и (-1) +(-2) = -3. Значит, числа -1 и -2 являются корнями данного уравнения.

3. Биквадратное уравнение

Уравнение вида a + b + c = 0 называют биквадратным

Такое уравнение решается методом замены переменной. Обозначим , тогда . Заметим что t ≥ 0, так как t = исходное уравнение имеет вид

Т.е. является обыкновенной квадратным уравнением, которое решается по приведенной выше схеме.

Пусть и – корни полученного квадратного уравнения. Если > 0 и , исходное биквадратное уравнение имеет четыре корня:

Если одно из чисел или отрицательно, а другое неотрицательно, то имеем два корня, либо один (x = 0).

Введение нового переменного – наиболее распространенный метод решения самых разных уравнений.

Решение. Обозначим и заметим, что t ≥ 0

Тогда исходное уравнение примет вид:

Так как D > 0, то полученное квадратное уравнение имеет два корня

Оба эти корня удовлетворяют условию (*) следовательно, уравнение имеет четыре действительных решения

3. Разложение квадратного трёхчлена на множители

Из теоремы Виета следует очень важное утверждение:

теорема о разложении квадратного трёхчлена на множители.

Если квадратное уравнение a + bx + c = 0, где a ≠ 0 имеет действительные корни то квадратный трёхчлен

a + bx + c = 0 раскладывается на множители следующим образом: a + bx + c = а ( х- ) ( х — )

Пример: Разложить н множители выражение 3 + 5x

Решение: Найдём корни уравнения 3 + 5x = 0

По теореме о разложении квадратного трёхчлена на множители имеем:

3. Уравнение, содержащие переменную под знаком модуля

Модулем числа называют само это число, если оно неотрицательно, либо число — | |.

Формальная запись этого определения такова:

При решении уравнений, содержащих переменную плд знаком модуля, используется определение модуля.

пример: решить уравнение: | |=

решение: по определению модуля:

Говорят, что выражение модулем меняет свой знак в точке x=1, поэтому все множество чисел разбивается на два числовых промежутка.

а) При x ≥ 1 исходное уравнение принимает вид:

3. Иррациональные уравнения

1. Уравнения, содержащие один знак радикала второй степени

Возведение обеих частей уравнения в степень

При возведении обеих частей уравнения в четную степень (в частности, в квадрат) получается уравнение, неравносильному исходному.

Кроме корней исходного уравнения могут появиться посторонние корни, т.е. числа, являющиеся решениями возведенного в четную степень уравнения, но не являющимися корнями исходного уравнения.

Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляет в начальное уравнение и проверяют, верное ли получается числовое неравенство.

Пример. Решить уравнение

Решение возведем обе части уравнения в квадрат. Имеем:

Проверка. При но 1 ≠ -1 следовательно корень x=-1 посторонний

При x = 2; так как 2=2, то проверяемое число действительно является корнем исходного уравнения

1.7 Тригонометрические уравнения

Решение: так как то уравнение можно переписать следующим образом:

2 ( 1 — ) + 7 — 5 = 0, т.е. 27

Полагая, что = y, приходим к квадратному уравнению

2 – 7 y + 3 = 0, откуда = = 3, и получаем совокупность двух простейших уравнений

Первое из них имеет решение

, а второе решений не имеет

1.8 Системы уравнений

Система уравнений состоит из двух и более алгебраических уравнений.

Решением системы называют такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество.

Решить систему – значит найти все её решения или доказать, что их нет.

2. СПОСОБЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Рассмотрим несколько способов решения систем уравнений

2.1 Графический способ решения системы уравнений

Решение. Каждое уравнение системы задаёт линейную функцию. Построим графики этих уравнений в одной системе координат. Координаты пересечений графиков обращают оба уравнения системы в верные равенства. Решением системы является пара значений переменных: х=1,у=1. Ответ можно записать так: ( 1; 1 )

Графический способ решения систем уравнения состоит в следующем:

1. Строятся графики каждого уравнения системы

2. Определяются точки пересечения графиков

3. Записывается ответ: координаты точек пересечения построенных графиков.

2.2 Метод подстановки

Решение: Из первого уравнения выразим x через y:

Подставив полученное выражение во второе уравнение системы, получим уравнение с одним неизвестным

Подставив это число в выражение

Получим ответ: x = 3

Алгоритм решения систем уравнений методом подстановки

1. Из одного уравнения системы одна переменная выражается через другую.

2. Полученное выражение подставляется во второе уравнение системы.

3. Решается полученное после подстановки уравнение

4. Полученное решение подставляется в выражение из п.1

5. Если при решении последнего уравнения получается тождество 0=0, то это означает, что исходная система имеет бесконечное множество решений вида (х, у), каждое из которых удовлетворяет первому уравнению системы. Если же при тождественных преобразованиях последнего уравнения получится неверное числовое равенство, то система решений не имеет.

2.3 Метод сложения

Решение: Домножим первое уравнение системы на 2, а второе — на 3. Сложим получившиеся уравнения почленно и запишем результат вместо второго уравнения системы.

Числа, на которые домножают уравнения перед сложением, выбирают так, чтобы при суммировании коэффициент перед одной из переменных стал равен нулю.

В результате преобразований уравнений системы и замены одного из уравнений результатом суммирования других получены равносильные системы.

Две системы называют равносильными, если каждое решение одной системы является решением другой системы и наоборот.

2.4 Метод введения новой переменной

При решении систем нелинейных уравнений, как правило, применя-ются различные комбинации нескольких методов решения систем.

Решение. Преобразуем второе уравнение системы воспользовавшись формулой сокращенного умножения

Из первого уравнения системы x-y =1; подставим 1 во второе уравнение. Запишем получившуюся систему:

К этой системе уже вполне применим метод – выразить одно неизвестное из первого уравнения системы и подставить во второе:

Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XXI век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.

В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мой доклад может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного доклада я не ставила себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

1. Большой справочник для школьников, поступающие в вузы

П.И. Алтынов, И. И. Баврин, Е. М. Бойченко и др. – М. Дрофа, 2016-840 с.

2. Цыпкин А. Г. Под ред. С. А. Степанова. Справочник по математике для средней школы. – М.: Наука, 1980.- 400 с.

Виды уравнений и способы их решения в 9-м классе

Разделы: Математика

Перед уроком были изучены темы “Уравнения с одной переменной”, “Целые рациональные уравнения и основные методы решения целых рациональных уравнений”, “Дробно-рациональные уравнения”, “Уравнения с модулем и параметрами”.

За две недели до обобщающего урока на стенде “Готовься к экзамену” было предложено:

  1. Прорешать из экзаменационного сборника задания второго раздела (№ 71–101).
  2. Вопросы по теоретическому материалу.
  3. Примерное оформление экзаменационного задания.
  4. Сроки индивидуальных и групповых консультаций.

Вопросы по теоретическому материалу

  1. Определение уравнения с одним неизменным.
  2. Корень уравнения.
  3. Что значит решить уравнение?
  4. Определение области допустимых значений.
  5. Когда два уравнения являются равносильными?
  6. Когда одно уравнение является следствием другого?
  7. Какие тождественные преобразования приводят к равносильным уравнениям?
  8. Особенность тождественного преобразования “деление на выражение, содержащее переменную”.
  9. Виды уравнений, их стандартный вид, алгоритм решения.
  10. Основные методы решения уравнений с одним неизвестным.

а) учебник А-9 под ред. Н.Я. Виленкина, глава X, с. 157–189;
б) конспекты.

№ 93(1)
№ 5.60(а)
Галицкий, с. 51

если D = 0, то x = –3 при a = –3, но x = –3 не удовлетворяет условию, так как (x – 4)(x + 3) 0;

Среди найденных значений может быть появление посторонних корней, так как уравнение x² + (3 – a)x – 3a = 0 следствие исходного уравнения.

Чтобы x2 = a являлся корнем x 2 – 4 0, a – 4 0, a 4

x 2 + 3 0, то есть a – 3 0, a –3

Ответ: при a 4, a –3 корнем уравнения является x = a.

Задания к уроку подобраны с учетом подготовленности учащихся данного класса.

  • привести в систему знаний учащихся по теме;
  • повторить теорию решения уравнений;
  • выработать умение определить вид уравнения;
  • выразить наиболее рациональный способ решения данного уравнения;
  • формировать наблюдательность учащихся.

I. Организационный момент

Сообщение темы урока и его целей.

II. Повторение теории по решению уравнений

1. Что называется уравнением?

Ответ: Любое равенство вида некоторые функции называются уравнением с одной переменной (или с одной неизвестной).

2. Что называется корнем уравнения?

Ответ: Число a называется корнем (или решением) данного уравнения с одной переменной, если при подстановке числа a вместо x в обе части уравнения, получаем верное числовое неравенство, то есть при подстановке x = a обе части уравнения определены и их значения совпадают:

3. Что значит решить уравнение?

Ответ: Решить уравнение – это значит найти все его корни или доказать что их нет.

4. Как определяется область определения допустимых значений уравнения?

Ответ: ОДЗ называется пересечение множеств областей определения функций

5. Какие уравнения называются равносильными (эквивалентными)?

Ответ: Два уравнения называются равносильными, если все корни уравнения первого являются корнями второго и наоборот, все корни второго уравнения являются корнями первого.

6. А как определить уравнение следствие?

Ответ: Если все корни одного уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения.

7. Какие тождественные преобразования приводят к равносильным уравнениям?

  • к обеим частям уравнения прибавить любую функцию, которая определена при всех значениях из ОДЗ. Следствие. Члены уравнения можно переносить из одной части уравнения в другую;
  • обе части уравнения умножить на любую функцию, определенную и отличную от нуля при всех допустимых значениях неизвестного. Также можно делить и умножать на число, отличное от нуля;
  • в обеих частях уравнения стоят функции, принимающие только неотрицательные значения, то при возведении в одну и ту же четную степень получаем уравнение, равносильное данному. Появлению “посторонних корней” приводят преобразования:
    а) приведение подобных членов – происходит расширение ОДЗ;
    б) сокращение дроби на выражение, содержащие неизвестное (тоже происходит расширение ОДЗ);
    в) умножение на выражение, содержащее неизвестное;
    г) освобождение дроби от знаменателя, содержащего неизвестное. Необходимо обязательно делить проверку или лучше перейти к смешанной системе.

8. Виды уравнений, их стандартный вид, алгоритм решения (в процессе решения).

Ответ:
а) Линейное;
б) квадратное;
в) уравнение высших порядков (биквадратным, возвратное, симметрическое);
г) уравнения содержащие модуль;
д) уравнение с параметром.]

9. Какие общие методы решения уравнений с одним неизвестным?

Ответ: Вынесение общего множителя (разложение на множители), замена переменной, использование ограниченности и монотонности функций, графически.

Понятие равносильности для нас понятие только вводится, и поэтому проведем тест, как же вы этим понятием владеете.

Тест рассчитан на 5–7 минут. Контрольные задания даются в двух вариантах. После окончания работы на доске вывешиваются контрольные ответы. За каждое правильно выполненное задание – 1 балл. После окончания работы ученик оценивает свою работу самостоятельно, затем разбираются неверные ответы (к заданиям предлагаются).

Корни всех приведенных уравнений находятся среди чисел –3, –2, 1, 2, 3. Укажите пары равносильных уравнений.

(x 2 – 6) 2 = x 2

(x – 1)(x 2 – 6) = (1 – x)x

(x – 2)(x 2 – 6) = –x(x – 2)

x 2 – 6 = x

(x 2 + x – 6)(x 2 – x – 6) = 0

x + 3 = 0

x – 2 = 0

(x – 1)(x – 2)(x + 3) = 0

Равносильные уравнения

Корни всех приведенных уравнений находятся среди чисел –2, –1, 1, 2. Укажите пары равносильных уравнений.

(x 2 – 2) 2 = x 2

(x – 1)(x 2 – 2) = x(x – 1)

(x – 2)(x 2 – 2) = x(x – 2)

x 2 – 2 = x

x + 1 = 0

(x 2 – 1)(x – 2) = 0

(x 2 – x – 2)(x 2 + x – 2) = 0

x – 2 = 0

Равносильные уравнения

VI. Решение задач

Ученик должен определить вид уравнения, алгоритм решения данного уравнения, обратить внимание на способы его решения, выбрать рациональный способ решения.

Задачи взяты из “Сборника задач по алгебре” для классов с углубленным изучением математики под редакцией М.Л. Галицкого.

1. Уравнение третьей степени, в стандартном виде. Метод решения – разложения на линейные множители (теорема Безу):

Так как это уравнение рациональное целое с целыми коэффициентами, то оно имеет целые корни, являющиеся делителями свободного члена: 21: 1; 3; 7; 21. x1 = 1 является корнем (убеждаемся подстановкой), поэтому многочлен левой части уравнения делится на двучлен х – 1.

Решим уравнение x² + 10x + 21 = 0. По теореме Виета корни: x2 = –3, x3 = –7, x1 = 1.

Как еще с помощью теоремы Безу можно было выполнить разложение на множители?

Ответ: Если множитель делится на x – 1 и на x + 3, то он делится и на их произведение.

Это уравнение четвертой степени. Метод решения – группировка. Если левая часть уравнения представлена в виде разложения на линейные множители, а в правой – число и выносящиеся: (x + a)(x + b)(x + b)(x + c) = A и a + b = c + d, в этом случае возможна группировка множителей.

Сделаем замену x² + x = t и получим уравнение

3. 5 – 12x³ + 14x² = 12x – 5, 5x² – 12x³ + 14x² – 12x + 5 = 0 возвратное уравнение членов степени. Так как x = 0 не является корнем данного уравнения, разделим почленно на x² и сгруппируем:

Сделаем замену:

4. – это дробно-рациональное уравнение, содержащее модуль.

Ответ: <0; 2; 4>

Алгоритм: а) находим нули модуля; б) дискриминант уравнения разбиваем на промежутки; в) раскрываем модуль на каждом из промежутков; г) выбираем ответ, учитывая данный промежуток; д) ответ – совокупность решений.

– это дробно-рациональное уравнение. Выделим квадрат разности:

Введем новую переменную и получим уравнение вида t² + 2t – 3 = 0. По теореме Виета корни этого уравнения t = 1 или t = –3.

6. ax² + 3ax – (a + 2) = 0 – это квадратное уравнение с параметром. При решении уравнения с параметрами необходимо выяснить, при каких значениях параметров уравнение имеет корни и сколько их в зависимости от параметров при которых это выражение действительно определяет корни уравнения, то есть найти при каком значении параметра: г) x – единственный корень.

При D > 0 уравнение имеет два различных действительных корня, то есть при

При D 4 – 133х³ + 48х² – 133х + 78 = 0.

5. Для каждого значения параметра а решить уравнение ax² – (2a + 7)x + a + 3 = 0.

6. Найдите все значения параметра b, при которых уравнение имеет ровно один корень.

7 * . Решить уравнение x 4 + 4х + 3 = 0.

2. Дается оценка работы учащихся на уроке, выставляются в журнал. Сообщается дата и время консультации перед итоговой контрольной работой по этой теме.


источники:

http://infourok.ru/vidy-uravnenij-i-sposoby-ih-resheniya-5061319.html

http://urok.1sept.ru/articles/564266