Виды уравнений поверхностей 2 порядка

Поверхности второго порядка: их виды, уравнения, примеры

Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат

Общее уравнение поверхности второго порядка имеет вид

Для определения вида поверхности второго порядка по общему уравнению и приведения общего уравнения к каноническому, нам понадобятся выражения, которые называются инвариантами. Инварианты — это определители и суммы определителей, составленные из коэффициентов общего уравнения, которые не меняются при переносе и повороте системы координат. Эти инварианты следующие:

Следующие два выражения, называемые семиинвариантами, являются инвариантами поворота декартовой прямоугольной системы координат:

В случае, если I 3 = 0 , K 4 = 0 , семиинвариант K 3 будет также и инвариантом переноса; в случае же I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 семиинвариант K 2 = 0 будет также и инвариантом переноса.

Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому

I. Если I 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 , λ 2 , λ 3 — корни характеристического уравнения

.

В зависимости от того, какие знаки у чисел λ 1 , λ 2 , λ 3 и K 4 /I 3 , определяется вид поверхности второго порядка.

Эллипсоид

Если числа λ 1 λ 2 , λ 3 одного знака, а K 4 /I 3 имеет знак им противоположный, то общее уравнение поверхности второго порядка определяет эллипсоид.

После решения характеристического уравнения общее уравнение можно переписать в следующем виде:

.

Тогда полуоси эллипсоида будут

, , .

Поэтому каноническое уравнение эллипсоида имеет вид

.

Мнимый эллипсоид

Если числа λ 1 λ 2 , λ 3 и K 4 /I 3 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллипсоид.

После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого эллипсоида:

,

, , .

Мнимый конус

Если числа λ 1 λ 2 , λ 3 , а K 4 = 0 , то общее уравнение поверхности второго порядка определяет мнимый конус.

После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого конуса:

,

, , .

Однополостный гиперболоид

Если два корня характеристического уравнения имеют один знак, а третий корень и K 4 /I 3 имеют знак, им противоположный, то общее уравнение поверхности второго порядка определяет однополостный гиперболоид.

Обозначая в этом случае через λ 1 и λ 2 корни характеристического уравнения, имеющие один знак, общее уравнение можно переписать в виде:

.

, , ,

то каноническое уравнение однополостного гиперболоида будет иметь вид

.

Двуполостный гиперболоид

Если два корня характеристического уравнения и K 4 /I 3 имеют один и тот же знак, а третий корень характеристического уравнения им противоположный, то общее уравнение поверхности второго порядка определяет двуполостный гиперболоид.

Обозначая в этом случае через λ 1 и λ 2 корни, имеющие один знак, общее уравнение можно переписать в виде:

.

Последняя запись и есть каноническое уравнение двуполостного гиперболоида.

Конус

Если два корня характеристического уравнения имеют один знак, третий корень имеет знак, им противоположный, а K 4 = 0 , то общее уравнение поверхности второго порядка определяет конус.

Считая, что одинаковый знак имеют корни λ 1 и λ 2 , общее уравнение можно переписать в виде:

,

известном как каноническое уравнение конуса.

II. Если I 3 = 0 , а K 4 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.

Эллиптический параболоид

Если λ 1 и λ 2 имеют один знак, то общее уравнение поверхности второго порядка определяет эллиптический параболоид.

Общее уравнение можно переписать в виде:

.

Выбирая перед корнем знак, противоположный знаку λ 1 и λ 2 , и полагая

,

,

получим каноническое уравнение эллиптического параболоида:

.

Гиперболический параболоид

Если λ 1 и λ 2 имеют разные знаки, то общее уравнение поверхности второго порядка определяет гиперболический параболоид.

Обозначая через λ 1 положительный корень, а через λ 2 — отрицательный и беря перед корнем знак минус, переписываем уравнение в виде:

.

, ,

получим каноническое уравнение гиперболического параболоида:

.

III. Если I 3 = 0 , а K 4 = 0 , I 2 ≠ 0 то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.

Эллиптический цилиндр

Если λ 1 и λ 2 одного знака, а K 3 /I 2 имеет знак, им противоположный, то общее уравнение поверхности второго порядка определяет эллиптический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

.

, ,

получим каноническое уравнение эллиптического цилиндра:

.

Мнимый эллиптический цилиндр

Если λ 1 , λ 2 и K 3 /I 2 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллиптический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

.

Последняя запись — каноническое уравнение мнимого эллиптического цилиндра.

Мнимые пересекающиеся плоскости

Если λ 1 и λ 2 имеют один знак, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две мнимые пересекающиеся плоскости.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

.

, ,

получим каноническое уравнение мнимых пересекающихся плоскостей:

.

Гиперболический цилиндр

Если λ 1 и λ 2 имеют разные знаки, а K 3 ≠ 0 , то общее уравнение поверхности второго порядка определяет гиперболический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

,

, .

Таким образом, каноническое уравнение гиперболического цилиндра:

.

Пересекающиеся плоскости

Если λ 1 и λ 2 имеют разные знаки, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две пересекающиеся плоскости.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

,

, .

Таким образом, пересекающихся плоскостей:

.

IV. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 = I 1 — отличный от нуля корень характеристического уравнения.

Параболический цилиндр

Уравнение, получившееся после решения характеристического уравнения, можно переписать в виде:

,

.

Это уравнение параболического цилиндра, в каноническом виде оно записывается так:

.

V. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

.

Параллельные плоскости

Если K 2 , то общее уравнение поверхности второго порядка определяет две параллельные плоскости.

,

перепишем его в виде

.

Мнимые параллельные плоскости

Если K 2 > 0 , то общее уравнение поверхности второго порядка определяет две мнимые параллельные плоскости.

,

перепишем его в виде

.

Совпадающие плоскости

Если K 2 = 0 , то общее уравнение поверхности второго порядка определяет две совпадающие плоскости:

.

Решение примеров на определение вида поверхности второго порядка

Пример 1. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Решение. Найдём I 3 :

(как вычислить определитель).

I 1 = 1 + 5 + 1 = 7 ,

Следовательно, данная поверхность — однополостный гиперболоид.

.

Составляем и решаем характеристическое уравнение:

;

.

,

, , .

Пример 2. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Решение. Найдём I 3 :

.

.

Следовательно, общее уравнение определяет эллиптический параболоид.

.

I 1 = 2 + 2 + 3 = 7 .

Решаем характеристическое уравнение:

.

.

,

, .

Пример 3. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

,

,

,

I 1 = 5 + 2 + 5 = 12 .

Так как I 3 = К 4 = 0 , I 2 > 0 , I 1 K 3 , то данное общее уравнение определяет эллиптический цилиндр.

.

.

Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение

Пример 4. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Поверхности 2 порядка: примеры

С поверхностями 2-го порядка студент чаще всего встречается на первом курсе. Сначала задачи на эту тему могут казаться простыми, но, по мере изучения высшей математики и углубления в научную сторону, можно окончательно перестать ориентироваться в происходящем. Для того чтобы такого не произошло, надо не просто заучить, а понять, как получается та или иная поверхность, как изменение коэффициентов влияет на нее и ее расположение относительно изначальной системы координат и как найти новую систему (такую, в которой ее центр совпадает с началом координат, а ось симметрии параллельна одной из координатных осей). Начнем с самого начала.

Определение

Поверхностью 2 порядка называется ГМТ, координаты которого удовлетворяют общему уравнению следующего вида:

Ясно, что каждая точка, принадлежащая поверхности, должна иметь три координаты в каком-либо обозначенном базисе. Хотя в некоторых случаях геометрическое место точек может вырождаться, например, в плоскость. Это лишь значит, что одна из координат постоянна и равна нулю во всей области допустимых значений.

Полная расписанная форма упомянутого выше равенства выглядит так:

Anm – некоторые константы, x, y, z – переменные, отвечающие аффинным координатам какой-либо точки. При этом хотя бы один из множителей-констант должен быть не равен нулю, то есть не любая точка будет отвечать уравнению.

В подавляющем большинстве примеров многие числовые множители все же тождественно равняются нулю, и уравнение значительно упрощается. На практике определение принадлежности точки к поверхности не затруднено (достаточно подставить ее координаты в уравнение и проверить, соблюдается ли тождество). Ключевым моментом в такой работе является приведение последней к каноническому виду.

Написанное выше уравнение задает любые (все указанные далее) поверхности 2 порядка. Примеры рассмотрим далее.

Виды поверхностей 2 порядка

Уравнения поверхностей 2 порядка различаются только значениями коэффициентов Anm. Из общего вида при определенных значениях констант могут получиться различные поверхности, классифицируемые следующим образом:

  1. Цилиндры.
  2. Эллиптический тип.
  3. Гиперболический тип.
  4. Конический тип.
  5. Параболический тип.
  6. Плоскости.

У каждого из перечисленных видов есть естественная и мнимая форма: в мнимой форме геометрическое место вещественных точек либо вырождается в более простую фигуру, либо отсутствует вовсе.

Цилиндры

Это самый простой тип, так как относительно сложная кривая лежит только в основании, выступая в качестве направляющей. Образующими являются прямые, перпендикулярные плоскости, в которой лежит основание.

На графике показан круговой цилиндр – частный случай эллиптического цилиндра. В плоскости XY его проекция будет эллипсом (в нашем случае — кругом) — направляющей, а в XZ – прямоугольником – так как образующие параллельны оси Z. Чтобы получить его из общего уравнения, необходимо придать коэффициентам следующие значения:

Вместо привычных обозначений икс, игрек, зет использованы иксы с порядковым номером – это не имеет никакого значения.

По сути, 1/a 2 и другие указанные здесь постоянные являются теми самыми коэффициентами, указанными в общем уравнении, но принято записывать их именно в таком виде – это и есть каноническое представление. Далее будет использоваться исключительно такая запись.

Так задается гиперболический цилиндр. Схема та же – направляющей будет гипербола.

Параболический цилиндр задается несколько иначе: его канонический вид включает в себя коэффициент p, называемый параметром. На самом деле, коэффициент равен q=2p, но принято разделять его на представленные два множителя.

Есть еще один вид цилиндров: мнимые. Такому цилиндру не принадлежит ни одна вещественная точка. Его описывает уравнение эллиптического цилиндра, но вместо единицы стоит -1.

Эллиптический тип

Эллипсоид может быть растянут вдоль одной из осей (вдоль которой именно зависит от значений постоянных a, b, c, указанных выше; очевидно, что большей оси будет соответствовать больший коэффициент).

Также существует и мнимый эллипсоид – при условии, что сумма координат, помноженная на коэффициенты, равна -1:

Гиперболоиды

При появлении минуса в одной из констант уравнение эллипсоида превращается в уравнение однополостного гиперболоида. Надо понимать, что этот минус не обязательно должен располагаться перед координатой x3! Он лишь определяет, какая из осей будет осью вращения гиперболоида (или параллельна ей, так как при появлении дополнительных слагаемых в квадрате (например, (x-2) 2 ) смещается центр фигуры, как следствие, поверхность перемещается параллельно осям координат). Это относится ко всем поверхностям 2 порядка.

Кроме этого, надо понимать, что уравнения представлены в каноническом виде и они могут быть изменены с помощью варьирования констант (с сохранением знака!); при этом их вид (гиперболоид, конус и так далее) останется тем же.

Такое уравнение задает уже двуполостный гиперболоид.

Коническая поверхность

В уравнении конуса единица отсутствует – равенство нулю.

Конусом называется только ограниченная коническая поверхность. На картинке ниже видно, что, по сути, на графике окажется два так называемых конуса.

Важное замечание: во всех рассматриваемых канонических уравнениях константы по умолчанию принимаются положительными. В ином случае знак может повлиять на итоговый график.

Координатные плоскости становятся плоскостями симметрии конуса, центр симметрии располагается в начале координат.

В уравнении мнимого конуса стоят только плюсы; ему принадлежит одна единственная вещественная точка.

Параболоиды

Поверхности 2 порядка в пространстве могут принимать различные формы даже при схожих уравнениях. К примеру, параболоиды бывают двух видов.

x 2 /a 2 +y 2 /b 2 =2z

Эллиптический параболоид, при расположении оси Z перпендикулярно чертежу, будет проецироваться в эллипс.

x 2 /a 2 -y 2 /b 2 =2z

Гиперболический параболоид: в сечениях плоскостями, параллельными ZY, будут получаться параболы, а в сечениях плоскостями, параллельными XY – гиперболы.

Пересекающиеся плоскости

Есть случаи, когда поверхности 2-ого порядка вырождаются в плоскости. Эти плоскости могут располагаться различными способами.

Сначала рассмотрим пересекающиеся плоскости:

x 2 /a 2 -y 2 /b 2 =0

При такой модификации канонического уравнения получаются просто две пересекающиеся плоскости (мнимые!); все вещественные точки находятся на оси той координаты, которая отсутствует в уравнении (в каноническом – оси Z).

Параллельные плоскости

При наличии только одной координаты поверхности 2-го порядка вырождаются в пару параллельных плоскостей. Не забывайте, на месте игрека может стоять любая другая переменная; тогда будут получаться плоскости, параллельные другим осям.

В этом случае они становятся мнимыми.

Совпадающие плоскости

При таком простом уравнении пара плоскостей вырождается в одну – они совпадают.

Не забывайте, что в случае трехмерного базиса представленное выше уравнение не задает прямую y=0! В нем отсутствуют две другие переменные, но это всего лишь значит, что их значение постоянно и равно нулю.

Построение

Одной из самых сложных задач для студента является именно построение поверхностей 2 порядка. Еще более затруднительно переходить от одной системы координат к другой, учитывая углы наклона кривой относительно осей и смещение центра. Давайте повторим, как последовательно определить будущий вид чертежа аналитическим способом.

Чтобы построить поверхность 2 порядка, необходимо:

  • привести уравнение к каноническому виду;
  • определить вид исследуемой поверхности;
  • построить, опираясь на значения коэффициентов.

Ниже представлены все рассмотренные виды:

Для закрепления подробно распишем один пример такого типа задания.

Примеры

Допустим, имеется уравнение:

3(x 2 -2x+1)+6y 2 +2z 2 +60y+144=0

Приведем его к каноническому виду. Выделим полные квадраты, то есть скомпонуем имеющиеся слагаемые таким образом, чтобы они были разложением квадрата суммы или разности. Например: если (a+1) 2 =a 2 +2a+1, то a 2 +2a+1=(a+1) 2 . Мы будем проводить вторую операцию. Скобки в данном случае раскрывать не обязательно, так как это только усложнит вычисления, а вот вынести общий множитель 6 (в скобке с полным квадратом игрека) необходимо:

3(x-1) 2 +6(y+5) 2 +2z 2 =6

Переменная зэт встречается в этом случае только один раз – ее можно пока не трогать.

Анализируем уравнение на данном этапе: перед всеми неизвестными стоит знак «плюс»; при делении на шесть остается единица. Следовательно, перед нами уравнение, задающее эллипсоид.

Заметьте, что 144 было разложено на 150-6, после чего -6 перенесли вправо. Почему надо было сделать именно так? Очевидно, что самый большой делитель в данном примере -6, следовательно, чтобы после деления на него справа осталась единица, необходимо «отложить» от 144 именно 6 (о том, что справа должна оказаться единица, говорит наличие свободного члена – константы, не помноженной на неизвестную).

Поделим все на шесть и получим каноническое уравнение эллипсоида:

(x-1) 2 /2+(y+5) 2 /1+z 2 /3=1

В использованной ранее классификации поверхностей 2 порядка рассматривается частный случай, когда центр фигуры находится в начале координат. В данном примере он смещен.

Полагаем, что каждая скобка с неизвестными – это новая переменная. То есть: a=x-1, b=y+5, c=z. В новых координатах центр эллипсоида совпадает с точкой (0,0,0), следовательно, a=b=c=0, откуда: x=1, y=-5, z=0. В изначальных координатах центр фигуры лежит в точке (1,-5,0).

Эллипсоид будет получаться из двух эллипсов: первого в плоскости XY и второго в плоскости XZ (или YZ – это не имеет значения). Коэффициенты, на которые делятся переменные, стоят в каноническом уравнении в квадрате. Следовательно, в приведенном примере правильнее было бы делить на корень из двух, единицу и корень из трех.

Меньшая ось первого эллипса, параллельная оси Y, равняется двум. Большая ось, параллельная оси X – двум корням из двух. Меньшая ось второго эллипса, параллельная оси Y, остается той же – она равна двум. А большая ось, параллельная оси Z, равняется двум корням из трех.

С помощью полученных из первоначального уравнения путем преобразования к каноническому виду данных мы можем начертить эллипсоид.

Подводя итоги

Освещенная в этой статье тема довольно обширная, но, на самом деле, как вы можете теперь видеть, не очень сложная. Ее освоение, по сути, заканчивается на том моменте, когда вы заучиваете названия и уравнения поверхностей (и, конечно, как они выглядят). В примере выше мы подробно рассматривали каждый шаг, но приведение уравнения к каноническому виду требует минимальных познаний в высшей математике и не должно вызывать никаких затруднений у студента.

Анализ будущего графика по имеющемуся равенству уже более сложная задача. Но для ее удачного решения достаточно понимать, как строятся соответствующие кривые второго порядка – эллипсы, параболы и прочие.

Случаи вырождения – еще более простой раздел. Из-за отсутствия некоторых переменных упрощаются не только вычисления, как уже было сказано ранее, но и само построение.

Как только вы сможете уверенно назвать все виды поверхностей, варьировать постоянные, превращая график в ту или иную фигуру – тема будет освоена.

Виды уравнений поверхностей 2 порядка

С помощью векторов мы ввели понятие пространства и его размерности, в частности трехмерного. Рассмотрим в нем поверхности, которые «похожи» на поверхности, образованные вращением кривой второго порядка вокруг ее оси симметрии. Например, сфера может быть получена вращением окружности вокруг диаметра. Поверхность, описываемая некоторой линией, вращающейся вокруг неподвижной прямой d, называется поверхностью вращения с осью вращения d. Наряду с такими поверхностями мы встретимся и с более сложными случаями.

Пусть в пространстве задана прямоугольная декартова система координат.

Поверхность второго порядка – геометрическое место точек, декартовы прямоугольные координаты которых, удовлетворяют уравнению вида

в котором хотя бы один из коэффициентов отличен от нуля. Уравнение (2.48) называется общим уравнением поверхности второго порядка.

Уравнение (2.48) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую поверхность второго порядка. В зависимости от значений коэффициентов общего уравнения (2.48) оно может быть преобразовано с помощью параллельного переноса и поворота системы координат к одному из канонических видов, каждому из которых соответствует определённый класс поверхностей второго порядка. Среди них выделяют пять основных классов поверхностей: эллипсоиды, гиперболоиды, параболоиды, конусы и цилиндры. Для каждой из этих поверхностей существует декартова прямоугольная система координат, в которой поверхность задается простым уравнением, называемым каноническим уравнением.

Перечисленные поверхности второго порядка относятся к так называемым нераспадающимся поверхностям второго порядка. Можно говорить о случаях вырождения – распадающихся поверхностях второго порядка, к которым относятся: пары пересекающихся плоскостей, пары мнимых пересекающихся плоскостей, пары параллельных плоскостей, пары мнимых параллельных плоскостей, пары совпадающих плоскостей.

Наша цель – указать канонические уравнения для поверхностей второго порядка и показать, как выглядят эти поверхности.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется эллипсоидом (рис. 2.22) .

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что .

2. Эллипсоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно координатных осей,

· плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс (см. рис. 2.22).

Так же, как для эллипса, точки пересечения эллипсоида с координатными осями называются вершинами эллипсоида, центр симметрии – центром эллипсоида. Числа а, b , с называются полуосями. Если полуоси попарно различны, то эллипсоид называется трехосным.

Если две полуоси равны друг другу, то эллипсоид называется эллипсоидом вращения. Эллипсоид вращения может быть получен вращением эллипса вокруг одной из осей.

Примечание. Сфера является частным случаем эллипсоида при а= b . Тогда все равные полуоси обозначают R и уравнение (2.49) после умножения на R 2 принимает вид .

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется эллиптическим параболоидом (рис. 2.23) .

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает

· осевой симметрией относительно оси 0z ,

· плоскостной симметрией относительно координатных осей 0xz и 0yz .

3. В сечении эллиптического параболоида плоскостью, ортогональной оси 0z , получается эллипс, а плоскостями, ортогональными осям 0x и 0y –парабола. (см. рис. 2.23).

Можно получить эллиптический параболоид симметричный относительно оси 0х или 0у, для чего нужно в уравнении (2.50) поменять между собой переменные х и z или у и z соответственно.

Если полуоси равны a = b , то параболоид называется параболоидом вращения и может быть получен вращением параболы вокруг ее оси симметрии. При этом в сечении параболоида вращения плоскостью, перпендикулярной оси 0z , получается окружность.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется гиперболическим параболоидом (рис . 2.24).

Свойства гиперболического параболоида.

1. Гиперболический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

2. Гиперболический параболоид обладает

· осевой симметрией относительно оси 0z ,

· плоскостной симметрией относительно координатных плоскостей 0xz и 0yz .

4. Гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.

5. Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется однополостным гиперболоидом (рис. 2.25) .

Свойства однополостного гиперболоида.

1. Однополостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что z – любое число.

2. Однополостный гиперболоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно всех координатных осей,

· плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат 0z , получается эллипс, а плоскостями, ортогональными осям 0x и 0y, – гипербола (см. рис. 2.25).

Если в уравнении (2.52) a = b , то сечения однополостного гиперболоида плоскостями, параллельными плоскости х0у, являются окружностями. В этом случае поверхность называется однополостным гиперболоидом вращения.

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением

называется двуполостным гиперболоидом (рис. 2.26) .

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что | z | c и неограничен сверху.

2. Двуполостный гиперболоид обладает

· центральной симметрией относительно начала координат,

· осевой симметрией относительно всех координатных осей,

· плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат 0z , при | z |> c получается эллипс, при | z |= c – точка, а в сечении плоскостями, перпендику­лярными осям 0x и 0y , – гипербола (см. рис. 2.26).

Если в уравнении (2.53) a = b , то сечения двуполостного гиперболоида плоскостями, параллельными плоскости х0у, являются окружностями. В этом случае поверхность называется двуполостным гиперболоидом вращения.

Примечание. Если уравнение поверхности в прямоугольной системе координат имеет вид: F ( x 2 + y 2 ; z )=0, то эта поверхность – поверхность вращения с осью вращения 0z. Аналогично: F ( x 2 + z 2 ; y )=0 – поверхность вращения с осью вращения 0у, F ( z 2 + y 2 ; x )=0 – с осью вращения 0х

С учетом данного примечания могут быть записаны уравнения для рассмотренных выше поверхностей вращения, если осью вращения являются оси 0х или 0у.

Цилиндрическая поверхность образуется движением прямой линии, скользящей по некоторой неподвижной замкнутой или незамкнутой кривой и остающейся параллельной своему исходному положению. Множество прямолинейных образующих представляет собой непрерывный каркас цилиндрической поверхности. Через каждую точку поверхности проходит одна прямолинейная образующая. Неподвижная кривая, по которой скользит образующая, называется направляющей. Если направляющая линия является кривой второго порядка, то и цилиндрическая поверхность – второго порядка.

Если уравнение поверхности не содержит в явном виде какой–либо переменной, то это уравнение определяет в пространстве цилиндрическую поверхность с образующими, параллельными оси отсутствующего переменного и направляющей, которая в плоскости двух других переменных имеет то же самое уравнение.

Достаточно нарисовать на плоскости х0у направляющую, уравнение которой на этой плоскости совпадает с уравнением самой поверхности, и затем через точки направляющей провести образующие параллельно оси 0z. Для наглядности следует построить также одно–два сечения плоскостями, параллельными плоскости х0у. В каждом таком сечении получим такую же кривую, как и исходная направляющая. Аналогично поступают, рассматривая направляющую в плоскости х0z или у0z.

Цилиндрическая поверхность является бесконечной в направлении своих образующих. Часть замкнутой цилиндрической поверхности, заключенная между двумя плоскими параллельными сечениями, называется цилиндром, а фигуры сечения – его основаниями. Сечение цилиндрической поверхности плоскостью, перпендикулярной ее образующим, называется нормальным. В зависимости от формы нормального сечения цилиндры бывают:

1) эллиптические – нормальное сечение представляет собой эллипс (рис. 2.27а), каноническое уравнение

2) круговые – нормальное сечение круг, при a = b = r уравнение

3) гиперболические – нормальное сечение гипербола (рис. 2.27б), каноническое уравнение

4) параболические – нормальное сечение парабола (рис. 2.27в), каноническое уравнение

5) общего вида – нормальное сечение кривая случайного вида.

Если за основание цилиндра принимается его нормальное сечение, цилиндр называют прямым (рис. 2.27). Если за основание цилиндра принимается одно из косых сечений, цилиндр называют наклонным. Например, наклонные сечения прямого кругового цилиндра являются эллипсами. Наклонные сечения прямого эллиптического цилиндра в общем случае – эллипсы. Однако его всегда можно пересечь плоскостью, наклонной к его образующим, таким образом, что в сечении получится круг.

Конической поверхностью называется поверхность, производимая движением прямой, перемещающейся в пространстве так, что она при этом постоянно проходит через неподвижную точку и пересекает данную линию. Данная прямая называется образующей, линия – направляющей, а точка – вершиной конической поверхности (рис. 2.28).

Конусом называется тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины, и плоскостью, пересекающей все образующие по ту же сторону от вершины. Часть конической поверхности, ограниченная этой плоскостью, называется боковой поверхностью, а часть плоскости, отсекаемая боковой поверхностью, – основанием конуса. Перпендикуляр, опущенный из вершины на плоскость основания, называется высотой конуса.

Конус называется прямым круговым, если его основание есть круг, а высота проходит через центр основания. Такой конус можно рассматривать как тело, происходящее от вращения прямоугольного треугольника, вокруг катета как оси. При этом гипотенуза описывает боковую поверхность, а катет – основание конуса.

В курсе геометрии общеобразовательной школы рассматривается только прямой круговой конус, который для краткости называется просто конусом.

Если вершина конуса расположена в начале координат, направляющая кривая — эллипс с полуосями а и b, плоскость которого находится на расстоянии с от начала координат, то уравнение эллиптического конуса имеет вид:

( a >0, b >0, c >0). (2.58)

При а = b конус становится круговым.

Примечание. По аналогии с коническими сечениями (аналогично теореме 2.1) существуют и вырожденные поверхности второго порядка. Так, уравнением второго порядка x 2 = 0 описывается пара совпадающих плоскостей, уравнением x 2 = 1 – пара параллельных плоскостей, уравнением x 2 – y 2 = 0 – пара пересекающихся плоскостей. Уравнение x 2 + y 2 + z 2 = 0 описывает точку с координатами (0;0;0). Существуют и другие вырожденные случаи. Полная теория поверхностей второго порядка рассматривается в курсе аналитической геометрии


источники:

http://fb.ru/article/346452/poverhnosti-poryadka-primeryi

http://www.sites.google.com/site/vyssaamatem/kupit-ucastok/ii-10-poverhnosti-vtorogo-poradka