Влияние давления на химическое равновесие уравнение

Химическое равновесие. Принцип Ле Шателье

Материалы портала onx.distant.ru

Понятие химического равновесия

Признаки химического равновесия

Принцип Ле Шателье

Влияние температуры на химическое равновесие

Влияние давления на химическое равновесие

Влияние концентрации на химическое равновесие

Константа химического равновесия

Примеры решения задач

Задачи для самостоятельного решения

Понятие химического равновесия

Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием. Такое равновесие называется еще подвижным или динамическим равновесием.

Признаки химического равновесия

  1. Состояние системы остается неизменным во времени при сохранении внешних условий.
  2. Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.
  3. Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.
  4. К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.
  5. В состоянии равновесия энергия Гиббса достигает своего минимального значения.

Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия):

Если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции ΔH, тем значительнее влияние температуры на состояние равновесия.

В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.

Влияние давления на химическое равновесие

Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону.

В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO2. Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.

Влияние концентрации на химическое равновесие

Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO2. Увеличение концентрации NO2 смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.

При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении инертного газа равновесие сместится в сторону исходных веществ.

Константа химического равновесия

Для химической реакции:

константа химической реакции Кс есть отношение:

В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

ΔGT о = – RTlnK (2)

Примеры решения задач

Задача 1. При некоторой температуре равновесные концентрации в системе 2CO (г) + O2 (г)→2CO2 (г) составляли: [CO] = 0,2 моль/л, [O2] = 0,32 моль/л, [CO2] = 0,16 моль/л. Определите константу равновесия при этой температуре и исходные концентрации CO и O2, если исходная смесь не содержала СО2.

Решение.

ВеществоCOO2CO2 Сисходн, моль/л0,520,480 Спрореагир,моль/л0,320,160,16 Сравн, моль/л0,20,320,16

Во второй строке под Спрореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO2, причем, Сисходн= Спрореагир + Сравн.

Задача 2. Используя справочные данные, рассчитайте константу равновесия процесса

Решение.

ΔG298 о = 2·(- 16,71) кДж = -33,42·10 3 Дж.

lnK = 33,42·10 3 /(8,314× 298) = 13,489. K = 7,21× 10 5 .

Задача 3. Определите равновесную концентрацию HI в системе

если при некоторой температуре константа равновесия равна 4, а исходные концентрации H2 , I2 и HI равны, соответственно, 1, 2 и 0 моль/л.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л H2.

Вещество H2 I2 HI
сисходн., моль/л120
спрореагир., моль/лxx2x
cравн., моль/л1-x2-x2x

Тогда, К = (2х) 2 /((1-х)(2-х))

Решая это уравнение, получаем x = 0,67.

Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.

Задача 4. Используя справочные данные, определите температуру, при которой константа равновесия процесса: H2(г) + HCOH(г) →CH3OH(г) становится равной 1. Принять, что ΔН о Т » ΔН о 298, а ΔS о T » ΔS о 298.

Решение.

Если К = 1, то ΔG о T = — RTlnK = 0;

ΔН о 298 = -202 – (- 115,9) = -86,1 кДж = — 86,1× 10 3 Дж;

ΔS о 298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;

0 = — 86100 — Т·(-109,52)

Задача 5. Для реакции SO2(Г) + Cl2(Г) →SO2Cl2(Г) при некоторой температуре константа равновесия равна 4. Определите равновесную концентрацию SO2Cl2, если исходные концентрации SO2, Cl2 и SO2Cl2 равны 2, 2 и 1 моль/л соответственно.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO2.

Вещество SO2 Cl2 SO2Cl2
cисходн., моль/л221
cпрореагир., моль/лxxх
cравн., моль/л2-x2-xx + 1

Решая это уравнение, находим: x1 = 3 и x2 = 1,25. Но x1 = 3 не удовлетворяет условию задачи.

Следовательно, [SO2Cl2] = 1,25 + 1 = 2,25 моль/л.

Задачи для самостоятельного решения

1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обоснуйте.

Так как увеличение давления благоприятствует процессу, протекающему с уменьшением количества
газообразных веществ, то равновесие сместится вправо в реакции 3.

2. При некоторой температуре равновесные концентрации в системе:

составляли: [HBr] = 0,3 моль/л, [H2] = 0,6 моль/л, [Br2] = 0,6 моль/л. Определите константу равновесия и исходную концентрацию HBr.

К = 4; исходная концентрация HBr составляет 1,5 моль/л.

3. Для реакции H2(г) + S(г) →H2S(г) при некоторой температуре константа равновесия равна 2. Определите равновесные концентрации H2 и S, если исходные концентрации H2, S и H2S равны, соответственно, 2, 3 и 0 моль/л.

[H2] = 0,5 моль/л; [S] = 1,5 моль/л.

4. Используя справочные данные, вычислите температуру, при которой константа равновесия процесса

становится равной 1. Примите, что ΔН о Т≈ΔН о 298, а ΔS о T≈ΔS о 298

5. Используя справочные данные, рассчитайте константу равновесия процесса:

6. Для реакции 2С3Н8(г) → н-С5Н12(г)+СН4(г) при температуре 1000 К константа равновесия равна 4. Определите равновесную концентрацию н-пентана, если исходная концентрация пропана равна 5 моль/л.

7. При температуре 500 К константа равновесия процесса:

равна 3,4·10 -5 . Вычислите Δ G о 500.

8. При температуре 800 К константа равновесия процесса н-С6Н14(г)+ 2С3Н6(г)2(г) равна 8,71. Определите ΔG о f,8003Н6(г)), если ΔG о f,800(н-С6Н14(г)) = 305,77 кДж/моль.

9. Для реакции СО(г) + Cl2(г) →СO2Cl2(г) при некоторой температуре равновесная концентрация СO2Cl2(г) равна 1,2 моль/л. Определите константу равновесия данного процесса, если исходные концентрации СО(г) и Cl2(г) равны соответственно 2,0 и 1,8 моль/л.

10. При некоторой температуре равновесные концентрации в системе 2SО2(г) + О2(г) →2SO3(г) составляли: [SО2 ]=0,10 моль/л, [О2]=0,16 моль/л, [SО3]=0,08 моль/л. Вычислите константу равновесия и исходные концентрации SО2 и О2.

К=4,0; исходная концентрация SО2 составляет 0,18 моль/л;
исходная концентрация О2 составляет 0,20 моль/л.

Химическое равновесие

Химическое равновесие — состояние химической системы, при котором скорость прямой реакции равна скорости обратной.

В большом количестве заданий, которые мне довелось увидеть, я ни один раз видел, как коверкают это определение. Например, в заданиях верно-неверно предлагают похожий вариант, однако говорят о «равенстве концентраций исходных веществ и продуктов» — это грубая ошибка. Химическое равновесие — равенство скоростей.

Принцип Ле Шателье

В 1884 году французским химиком Анри Ле Шателье был предложен принцип, согласно которому, если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие (изменить температуру, давление, концентрацию), то система будет стремиться компенсировать внешнее воздействие.

Это принцип обоснован термодинамически и доказан. Однако в такой абстрактной формулировке его сложно применить для решения конкретных задач по химическому равновесию. В этой статье я покажу конкретные примеры и обозначу алгоритм действия, чтобы вы могли успешно справляться с заданиями.

Влияние изменения концентрации на химическое равновесие

При увеличении концентрации какого-либо компонента химической реакции, система будет стремиться восстановить равновесие: равновесие будет смещаться в сторону расходования добавленного компонента.

Объясню проще: если вы увеличиваете концентрацию вещества, которое находится в левой части, равновесие сместится в правую сторону. Если добавляете вещество из левой части (продуктов реакции) — смещается в сторону исходных веществ. Посмотрите на пример ниже.

Если мы попытаемся удалить какое-либо вещество из системы (уменьшить его концентрацию), то система будет стремиться заполнить «пустое» место, которые мы создали. Наглядно демонстрирую на примере:

Можно подвести итог полученным знаниям таким образом: «Куда добавляем — оттуда смещается, откуда берем — туда смещается». Воспользуйтесь этой или придумайте свое правило для запоминания этой закономерности 😉

Изменения давления и химическое равновесие

Если речь в задании идет об изменении давления, то первое, что нужно сделать, это посчитать количество газов в уравнении слева и справа. Твердые вещества и жидкости считать не нужно. Например:

В приведенном уравнении количество молекул газа в левой части — 1, в правой — 2.

Запомните правило: «При увеличении давления равновесие смещается в сторону меньших газов, при уменьшении давления — в сторону больших газов». Для нашей системы правило действует таким образом:

В случае, если слева и справа количество молекул газа одинаково, например, в реакции:

Слева — 2 газа, и справа — 2. В такой реакции увеличение или уменьшение давления не повлияет на химическое равновесие.

Изменение температуры и химическое равновесие

Если в задании увеличивают или уменьшают температуру, то первое, что вы должны оценить: экзотермическая это реакция или эндотермическая.

Следуйте следующему правилу: «При увеличении температуры равновесие смещается в сторону эндотермической реакции, при уменьшении — в сторону экзотермической реакции». У любой обратимой реакции есть экзо- и эндотермические части:

Поэтому данное правило универсально и применимо для всех реакций. Для примера разберем следующие задачи:

Чтобы не осталось белых пятен, возьмем экзотермическую реакцию и повторим с ней подобный эксперимент.

Катализатор и ингибитор

Действие катализатора и ингибитора соответственно касается только ускорения и замедления химической реакции. Они никоим образом не влияют на равновесие.

Константа равновесия

Константой равновесия называют отношения скоростей прямой и обратной реакции. Для реакции типа aA + bB = cC + dD константа равновесия будет записана следующим образом:

Решим задачу. Дана реакция: 2NO + Cl2 ⇄ 2NOCl . Вычислите константу равновесия, если равновесные концентрации веществ для данной реакции: c(NO) = 1.8 моль/л , c(Cl2) = 1.2 моль/л , c(NOCl) = 0.8 моль/л.

Константу равновесия для данной задачи можно представить в виде 1.64 * 10 -1 .

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

ВЛИЯНИЕ ДАВЛЕНИЯ НА КОНСТАНТУ ХИМИЧЕСКОГО

РАВНОВЕСИЯ (УРАВНЕНИЕ ПЛАНКА)

Для установления влияние давления на реакции, протекающие с участием газообразных веществ, воспользуемся константой равновесия, выраженной через равновесные мольные доли, Kх= f(T, p).

Выражение (9), записанное в виде , логарифмируют и полученное выражение с учетом того, что Kр не является функцией давления, дифференцируют по давлению при постоянной температуре

. (18)

Считая газы, участвующие в реакции, идеальными, можно из уравнения Менделеева-Клапейрона выразить изменение числа моль газообразных веществ в реакции и подставить в уравнение (18). Тогда

. (19)

Уравнения (18) и (19) описывают влияние давления на химическое равновесие в идеальной газовой реакции и называют уравнением Планка. Проведем анализ данного уравнения:

1) если реакция протекает с увеличением объема (количества вещества), то при повышении давления уменьшается. Это означает, что для реакций типа
А + B = 3C с ростом давления равновесие смещается в сторону исходных веществ;

2) если реакция протекает с уменьшением объема (количества вещества), то при повышении давления увеличивается. Для реакций типа А + 2B = C с ростом давления равновесие смещается в сторону продуктов реакции;

3) если реакция протекает без изменения объема (количества вещества), то при повышении давления не изменяется. Это означает, что для реакций типа
А + B = 2C с ростом давления равновесие не изменяется.

Влияние давления на химическое равновесие в растворе незначительно, так как объем раствора практически не изменяется.

3. растворы и гетерогенные равновесия

3.1. Основные понятия и определения

Термодинамическую систему однородную по физическому строению и химическим свойствам во всех точках, называют гомогенной.

Термодинамическую систему, состоящую из различных по физическим или химическим свойствам частей, отделенных друг от друга поверхностями раздела, называют гетерогенной.

Любая гетерогенная система состоит из нескольких фаз. Фаза – это гомогенная часть гетерогенной системы, ограниченная поверхностью раздела, при переходе через которую свойства системы меняются скачкообразно. Системы делятся на одно–, двух–, трехфазные и т.д.

Каждая система состоит из одного или нескольких веществ, называемых компонентами. Вещества, образующие термодинамическую систему, могут находиться в различных агрегатных состояниях: газообразном, жидком, твердом. Числом независимых компонентов называют наименьшее число индивидуальных компонентов, необходимое для образования данной системы, которое равно общему числу индивидуальных веществ, входящих в данную систему, за вычетом числа уравнений, связывающих равновесные концентрации этих веществ. По числу компонентов различают одно–, двух–, трех– и т.д. компонентные системы.

Любая система характеризуется внешними ( , , и т.д.) и внутренними (концентрационными) параметрами состояния или концентрациями, которые определяют равновесный состав фаз.

Число концентрационных параметров данной фазы равно числу независимых компонентов, входящих в ее состав фазы, за вычетом единицы (так как, например, если система состоит их двух компонентов, то концентрацию второго компонента можно определить, зная концентрацию первого).

Число независимых термодинамических параметров состояния данной системы, произвольное изменение которых в определенных пределах не вызывает исчезновения одних и образование других фаз называют числом термодинамических степеней свободы или вариантностью системы. По числу термодинамических степеней свободы системы разделяются на инвариантные ( ), моновариантные ( ), дивариантные ( ) и т.д.

3.2. Термодинамика растворов

3.2.1. ОСНОВНЫЕ ПОНЯТИЯ

Раствором называют гомогенную однофазную систему, состоящую минимум из двух независимых компонентов, в каждом элементарном объеме которого одинаковые физические, химические и термодинамические свойства. В жидких растворах обычно различают растворитель – это вещество, которое имеется в растворе в избытке, и растворенные вещества, хотя все компоненты раствора термодинамически равноценны. Компоненты, находящиеся в растворе в меньшем количестве называют растворенными веществами.

Растворы подразделяют на идеальные и реальные. Идеальным называют раствор, все компоненты которого характеризуются одинаковой формой и размером молекул и одинаковой энергией межмолекулярных взаимодействий. Идеальные растворы встречаются довольно редко. Это гомогенные смеси близких по физико-химическим свойствам веществ (смеси оптических изомеров, соседних членов одного и того же гомологического ряда). Моделью идеального газового раствора является смесь идеальных газов.

Большинство растворов являются реальными, их компоненты отличаются либо по форме, либо по размерам, либо по энергии межмолекулярных взаимодействий.

Все свойства растворов подразделяют на экстенсивные и интенсивные.

Экстенсивные свойства, зависят как от общей массы раствора, так и от его состава, например , , , , . Эти свойства относятся ко всему раствору, как единому целому, а не к отдельным его компонентам.

Интенсивные свойства, зависят только от состава раствора и не зависят от его общей массы, например, давление насыщенного пара.

Для характеристики растворов используют средние мольные и парциальные мольные свойства.

Среднее мольное свойство – экстенсивное свойство 1 раствора.

Парциальное мольное свойство го компонента – это частная производная от экстенсивного свойства раствора по числу моль этого компонента ( ) при постоянном числе моль всех остальных компонентов и внешних параметрах ( , ).

Среди парциальных молярных величин наибольшее значение имеет парциальная мольная энергия Гиббса, которая называется химическим потенциалом .

Химический потенциал является интенсивным свойством раствора.

3.2.2. УСЛОВИЕ РАВНОВЕСИЯ В ГОМОГЕННЫХ РАСТВОРАХ

Равновесие в гомогенном идеальном растворе выражает уравнение Гиббса–Дюгема:

, (1)

которое для двухкомпонентного раствора записывается в виде

.

Равновесие в гомогенном реальном растворе выражает уравнение Дюгема–Маргулеса:

. (2)

Для двухкомпонентного раствора условие равновесия записывается:

.

3.3. гетерогенные равновесия

3.3.1. равновесие в гетерогенной системе. Правило фаз гиббса

Условием термодинамического равновесия в гетерогенной системе является равенство химических потенциалов каждого компонента во всех фазах при или :

Для –компонентной и –фазной системы при условие термодинамического равновесия (теорема Гиббса) выражается системой уравнений

(3)

где индекс 1, 2,…, – номер компонента;

¢,²,¢¢¢,…, – номер фазы.

В равновесной системе связь между числом фаз, числом компонентов и числом термодинамических степеней свободы выражает основной закон фазового равновесия или правило фаз Гиббса:

, (4)

где – число независимых компонентов;

n – число внешних параметров, влияющих на состояние равновесия.

Если на систему влияют два внешних параметра ( и ), то правило фаз Гиббса записывается

.

Применим правило фаз Гиббса к анализу диаграммы состояния однокомпонентной системы, например, воды. В области средних давлений и средних температур вода может находиться в жидком, твердом (лед) и газообразном (пар) состояниях.

На рис. 1:

плоскость ОВС отвечает состоянию воды;

АОС – состоянию пара;

АОВ – состоянию льда;

О – тройная точка;

ОВ – кривая плавления;

ОС – кривая испарения;

ОА – кривая возгонки;

ОD – кривая давления насыщенного пара над переохлажденной водой.

Определим число степеней свободы в точках 1, 2 и тройной точке О.

В точке 1 вода находится в жидком состоянии, следовательно, число фаз , тогда

.

Число степеней свободы равно двум или система дивариантна. Это означает, что можно произвольно в определенных пределах изменять два параметра: давление и температуру, при этом число и вид фаз системы не изменится.

Точка 2 находится на кривой испарения, следовательно, в равновесии находятся две фазы: жидкость и пар. Тогда

.

Система моновариантна, следовательно, возможно изменение одного параметра: температуры или давления, при котором число и вид фаз системы не изменится.

В тройной точке О в равновесии находятся три фазы: вода, лед и пар, тогда

.

Система нонвариантна. Это означает, что три фазы могут находиться в равновесии только при определенных условиях.

3.3.2. Уравнение состояния однокомпонентной двухфазной системы

Состояние однокомпонентной двухфазной системы характеризуется уравнением Клаузиуса–Клапейрона:

где – мольная теплота фазового перехода;

, – мольный объем вещества в фазе ² и ¢ соответственно.

Для процесса возгонки и испарения можно допустить, что . При условии, что паровую фазу можно считать идеальной, в соответствии с уравнением Менделеева–Клапейрона , тогда уравнение Клаузиуса–Клапейрона запишется:

. (5)

Разделив переменные и проинтегрировав в определенных пределах в узком интервале температур, считая постоянной величиной, получим

.

На основе полученного уравнения можно рассчитать:

1) температуру кипения вещества под давлением , если известна температура кипения этого вещества под давлением и величина средней мольной теплоты испарения;

2) давление насыщенного пара индивидуального вещества при температуре , если известно давление насыщенного пара при температуре и средняя мольная теплота испарения;

3) среднюю мольную теплоту испарения или возгонки вещества, если известны значения давления насыщенного пара вещества при двух температурах.

3.3.3. фазовое равновесие жидкость-пар

Пусть существуют в состоянии равновесия жидкость и выделяющийся из нее пар. Если жидкий раствор является идеальным, то во всем интервале концентраций растворитель и растворенное вещество подчиняются закону Рауля:

, (6)

где – давление насыщенного пара го компонента над раствором;

– давление насыщенного пара над индивидуальным м компонентом при температуре раствора.

Для двухкомпонентного раствора можно записать:

; .

Так как , а общее давление над раствором складывается из парциальных давлений компонентов , то

.

Таким образом, зависимость давления насыщенного пара компонентов и общего давления пара от состава идеального раствора является линейной (диаграмма на рис. 2).

На практике чаще приходится встречаться с неидеальными растворами, которые не подчиняются закону Рауля. Для описания зависимости давления насыщенного пара компонента от состава реального раствора в закон Рауля вводится коэффициент активности:

.

Для двухкомпонентного раствора общее давление смеси равно:

.

Поскольку коэффициенты активности и зависят от состава раствора, то зависимость от представляет собой кривую. Отклонения давления пара от линейной зависимости в сторону больших значений называют положительными, а в сторону меньших значений – отрицательными отклонениями от закона Рауля (рис. 3). Отклонения

зависят от относительной величины энергии взаимодействия молекул жидкой смеси.

Иногда отклонения бывают настолько велики, что на кривых давление (температура) – состав появляется ярко выраженный экстремум (минимум или максимум).

Точки на диаграммах и , которым отвечает максимум давления насыщенного пара (минимум температуры кипения) называют положительными (рис. 4а), а если минимум давления (максимум температуры кипения) – отрицательными азеотропами (рис. 4б).

Как видно из рис. 4, в точке азеотропа состав жидкой и паровой фаз одинаков. Бинарные смеси, которые содержат азеотроп, называют азеотропными.

Состав равновесного с жидким раствором пара определяется согласно закону Дальтона:

– для идеального раствора;

– для реального раствора.

Из анализа последних уравнений видно, что рассчитать равновесный состав пара можно только для идеального раствора заданного состава. Для расчета равновесного состава паровой фазы реального раствора необходимо знать коэффициенты активности, численные значения которых определяют только экспериментальным путем.

Для представления данных по фазовому равновесию жидкость-пар кроме рассмотренных диаграмм применяют также диаграммы , , .

Для разделения жидких бинарных смесей используют методы перегонки и ректификации (многократной перегонки), которые основаны на различие составов жидкой и паровой фаз. Азеотропные смеси этими методами разделить невозможно. Для разделения азеотропных смесей необходимо создать условия, устраняющие азеотроп. Например, изменить значения внешних параметров ( , ) или добавить к бинарной смеси третий компонент, в присутствии которого азеотроп отсутствует.

Эбуллиоскопия

Эбуллиоскопия – явление повышения температуры кипения раствора нелетучего вещества по сравнению с температурой кипения чистого растворителя.

Основной закон эбуллиоскопии записывается:

, (7)

где – повышение температуры кипения; , – температура кипения раствора нелетучего вещества и чистого растворителя;

– эбуллиоскопическая константа (для воды = 0,52 (град·кг)/моль)

, (8)

– молекулярная масса растворителя; – теплота испарения растворителя; – моляльная концентрация растворенного вещества.

3.3.4. Фазовое равновесие твердое тело-жидкость. Уравнение шредера

Предположим, что в состоянии термодинамического равновесия существуют раствор твердого вещества в жидком растворителе и кристаллы данного твердого вещества. Равновесие в такой системе описывается уравнением Шредера:

,

где – мольная доля растворенного вещества;

– теплота плавления твердого вещества.

После интегрирования получаем:

,

где – температура плавления чистого твердого вещества.

Полученное уравнение справедливо для растворов, близких по свойствам к идеальным, поэтому уравнение Шредера позволяет рассчитывать растворимость только малорастворимых веществ.

Криоскопия

Криоскопия – явление понижения температуры замерзания раствора нелетучего вещества по сравнению с температурой замерзания чистого растворителя.

Основной закон криоскопии записывается:

, (9)

где – понижение температуры замерзания;

– температура замерзания раствора нелетучего вещества;

– температура замерзания чистого растворителя;

– криоскопическая константа (для воды = 1,86 (град·кг)/моль)

, (10)

– теплота плавления растворителя.

Методы криоскопии и эбуллиоскопии часто применяют для расчета молекулярной массы растворенного вещества.

3.3.5. фазовое равновесие жидкость-жидкость

Пусть в сосуде находятся две жидкости, практически не смешивающиеся друг с другом, например, вода и хлороформ. Если ввести в эту систему небольшое количество третьего вещества, например йода, то оно вполне определенным образом распределится между двумя жидкими фазами. В соответствии с законом распределения Нернста: при установлении равновесия отношение концентраций распределяющегося вещества в двух несмешивающихся жидкостях есть величина постоянная при постоянной температуре:

, (11)

где , – равновесные концентрации распределяющегося вещества в двух соприкасающихся фазах;

– коэффициент распроеделения.

Закон распределения Нернста лежит в основе процесса жидкостной экстракции – извлечения вещества из раствора при помощи другого растворителя, практически не смешивающегося с первым. Экстракция широко применяется в промышленности.

Состояние трехкомпонентных систем с ограниченной растворимостью принято изображать с помощью треугольных диаграмм. На рисунке приведена диаграмма растворимости в трехкомпонентной системе с одной парой ограниченно смешивающихся компонентов и . Вершины треугольника соответствуют содержанию 100 % компонентов , и . Любая точка внутри треугольника выражает состав трехкомпонентной системы. Заштрихованная плоскость соответствует области гетерогенного (двухфазного) состояния системы. Линия, ограничивающая гетерогенную область, называется изотермой взаимной растворимости.

4. химическая кинетика

Химическая кинетика – наука о скорости протекания химической реакции.

Скорость химической реакции – изменение концентрации одного из реагирующих веществ в единицу времени.

Поскольку в реакциях вещества участвуют в стехиометрических соотношениях, за скорость реакции может быть принята производная от концентрации любого из реагирующих веществ по времени:

, (1)

где – концентрация исходных веществ;

– время.

Концентрация исходных веществ убывает, поэтому перед производной стоит знак минус.

Если в качестве одного из реагирующих веществ выбран продукт реакции, то

. (2)

Скорость реакции в момент времени равна тангенсу угла наклона касательной, проведенной к кривой зависимости в точке, соответствующей времени :

.

4.1. основной закон химической кинетики.


источники:

http://studarium.ru/article/156

http://helpiks.org/8-97511.html