Вольфрам альфа система дифференциальных уравнений

Вольфрам альфа система дифференциальных уравнений

Достаточно войти на страницу wolframalpha набрать в текстовом поле свой запрос и нажать на кнопку «=»

(имеет всплывающую подсказку вычислить ) или просто нажать Enter .
Функционал Wolfram Alpha не ограничивается лишь поиском ответов на поставленные вопросы. С помощью этой системы можно, например, строить графики и сопоставлять различные данные, что намного наглядней и лучше воспринимается, чем просто текст. Кроме того, с помощью Wolfram Alpha можно производить математические операции, как элементарные (которые без проблем выполняет и Google), так и решать уравнения различной сложности. Также Wolfram Alpha умеет строить графики функций, вычислять значения синуса или косинуса и так далее.

Например можно решить вот такое уравнение :

а чтобы узнать, какое расстояние между Москвой и Тель-Авивом, нужно ввести в поле

и вот вам результат:

Один из минусов сервиса Wolfram Alpha – это его англоязычность…так что если хотите задать вопрос системе придется писать его на английском языке. Даже неизвестно, появится ли русскоязычная версия этой поисково-вычислительной системы.

Основные команды для Вольфрам Альфа

(Команды вводятся в строку Вольфрама — например выше. Все команды заканчиваются нажатием Enter)

1. Решение уравнений, построение графиков

  • Арифметические знаки плюс, минус, умножить, поделить +, — , *, / Примеры: 3*2, x*y, (a+b)/c
  • Возведение в степень «x в степени а» x^a. Примеры x^a, x**a, (a+b)^2, (a+b)**2, (a+b)^(2x+1)
  • Скобки. Действия в скобках ведутся первыми
  • Функции .sin(x), cos(x), tan(x)=sin(x)/cos(x), cotan(x)=cos(x)/sin(x), sec(x)=1/cos(x), cosec(x)=1/sin(x)
  • Функции log(x), exp(x), sinh(x), cosh(x), tanh(x), cotanh(x)
  • Корень квадратный из «х» sqrt(x) или x^(1/2)

Чтобы вычислить выражение, нужно его просто ввести. Например корень из 2 будет выглядеть как sqrt(2) или же 2^(1/2).

2. Чтобы решить уравнение, нужно просто его ввести

3. Чтобы построить график, нужно использовать команду plot

Например нарисуем с помощью Вольфрама функцию 2^(-x) cos(x). Это делается командой plot (график).

Чтобы построить несколько графиков на одной координатной плоскости (например для визуализации решения систем уравнений), при значении переменной x в интервале (A,B), нужно использовать команду

4. Чтобы собрать множители из двучлена (многочлена) f, наберите factor[f]

5. Чтобы развалить произведение f на слагаемые, используйте команду expand[f]

6. Чтобы упростить выражение f[x], наберите команду Simplify[f[x]]

Например упростить «е в степени догарифм х»:

Simplify[ exp[ log[x] ] ]

Вольфрам альфа: интегралы

Как работать с Wolfram Alpha

Основные операции

  • Сложение : a+b
  • Вычитание : a-b
  • Умножение : a*b
  • Деление : a/b
  • Возведение в степень : a^b

Примеры

  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).

Знаки сравнения

  • Меньше : : >
  • Равно : = или ==
  • Меньше или равно : =

Логические символы

  • И : &&
  • ИЛИ : ||
  • НЕ : !

Основные константы

  • Число : Pi
  • Число : E
  • Бесконечность : Infinity, inf или oo

Основные функции

  • : x^a

  • : Sqrt[x]
  • : x^(1/n)
  • : a^x
  • : Log[a, x]
  • : Log[x]
  • : cos[x] или Cos[x]
  • : sin[x] или Sin[x]
  • : tan[x] или Tan[x]
  • : cot[x] или Cot[x]
  • : sec[x] или Sec[x]
  • : csc[x] или Csc[x]
  • : ArcCos[x]
  • : ArcSin[x]
  • : ArcTan[x]
  • : ArcCot[x]
  • : ArcSec[x]
  • : ArcCsc[x]
  • : cosh[x] или Cosh[x]
  • : sinh[x] или Sinh[x]
  • : tanh[x] или Tanh[x]
  • : coth[x] или Coth[x]
  • : sech[x] или Sech[x]
  • : csch[x] или Csch[е]
  • : ArcCosh[x]
  • : ArcSinh[x]
  • : ArcTanh[x]
  • : ArcCoth[x]
  • : ArcSech[x]
  • : ArcCsch[x]

Решение уравнений

Чтобы получить решение уравнения вида достаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve[f[x]=0, x].

Примеры

  • Solve[Cos[x]+Cos[2x]+Sin[4x]=0,x] или Cos[x]+Cos[2x]+Sin[4x]=0;
  • Solve[x^5+x^4+x+1=0,x] или x^5+x^4+x+1=0;
  • Solve[Log[3,x^2+x+1]-Log[9,x^2]=0,x] или \Log[3,x^2+x+1]-Log[9,x^2]=0.

Если Ваше уравнение содержит несколько переменных, то запись: f[x, y,…,z]=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции и т. д. Чтобы получить решение уравнения вида по какой-либо одной из переменных, нужно написать в строке: Solve[f[x, y, …, z]=0, j], где — интересующая Вас переменная.

Примеры

  • Cos[x+y]=0 или Solve[Cos[x+y]=0,x] или Solve[Cos[x+y]=0,y];
  • x^2+y^2-5=0 или Solve[x^2+y^2-5=0,x] или Solve[x^2+y^2-5=0,y];
  • x+y+z+t+p+q=9.

Решение неравенств

Решение в Wolfram Alpha неравенств типа 0″ src=»http://upload.wikimedia.org/math/3/d/9/3d97eb56e02c2889dd20a89529548180.png» />, полностью аналогично решению уравнения . Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve[f[x]>0, x] или Solve[f[x]>=0,x].

Примеры

  • Cos[10x]-1/2>0 или Solve[Cos[10x]-1/2>0,x];
  • x^2+5x+10>=0 или Solve[x^2+5x+10>=0,x].

Если Ваше неравенство содержит несколько переменных, то запись: f[x, y,…,z]>0 или f[x, y,…,z]>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve[f[x, y,…,z]>0,j] или Solve[f[x, y,…,z]>=0,j], где — интересующая Вас переменная.

Примеры

  • Cos[x+y]>0 или Solve[Cos[x+y]>0,x] или Solve[Cos[x+y]>0,y];
  • x^2+y^3-5 =9.

Решение различных систем уравнений, неравенств и уравнений

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Сервис Wolfram Alpha поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции на отрезке нужно написать в строке Wolfram Alpha: Plot[f[x],]. Если Вы хотите, чтобы диапазон изменения ординаты был конкретным, например , нужно ввести: Plot[f[x],,].

Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:Plot[f[x]&&g[x]&&h[x]&&…&&t[x],].

Для того, чтобы построить график функции на прямоугольнике , нужно написать в строке Wolfram Alpha: Plot[f[x, y],,]. К сожалению, диапазон изменения аппликаты пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).

Математический анализ

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы

Для того, чтобы найти предел последовательности нужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Примеры

  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции при можно совершенно аналогично: Limit[f[x], x -> a].

Производные

Для того, чтобы найти производную функции нужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], ]. В том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: D[f[x, y, z,…,t], j], где — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], ], где означает тоже, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Интегралы

Для того, чтобы найти неопределенный интеграл от функции нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл так же просто: Integrate[f[x], ] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Дифференциальные уравнения и их системы

Чтобы найти общее решение дифференциального уравнения нужно написать в строке WolframAlpha: F[x, y, y’,y»,…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y’,y»,…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: , где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока-что не поддерживается.

Ошибки при работе с системой

Система может допускать некоторые ошибки при решении сложных задач [1] . К примеру, если попытаться решить неравенство , для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4) Примечания

Использование Wolfram Mathematica в решении дифференциальных уравнений

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

NovaInfo55, с. 5-9
Опубликовано 20 ноября 2016
Раздел: Физико-математические науки
Просмотров за месяц: 50
CC BY-NC

Аннотация

В статье рассматриваются примеры решения обыкновенных дифференциальных уравнений в системе Wolfram Mathematica.

Ключевые слова

Текст научной работы

Системы компьютерной математики (Maple, Mathematica, MatLab, Derive и др.) применяются в различных областях науки. Они содержат процедуры для численных и аналитических расчетов, средства программирования, визуализации. В настоящее время пакеты прикладных программ используются не только при решении численных задач, но и при доказательстве теорем. Системы компьютерной математики используются в решении математических проблем в работах Д.С. Воронова, О.П. Гладуновой, Е.С. Корнева, М.В. Куркиной, Е.Д. Родионова, Я.В. Славолюбовой, В.В. Славского, Н.К. Смоленцева, Л.Н. Чибриковой и др.

Система компьютерной математики Wolfram Mathematica является одним из наиболее распространенных программных средств, которое позволяет выполнять численные, символьные вычисления, имеет развитую двумерную и трехмерную графику, а также встроенный язык программирования высокого уровня. Для знакомства с языком программирования Wolfram Language рекомендуется интернет-ресурс Wolfram Language & System «Documentation Center» (http://reference.wolfram.com/language/). Выбирая раздел, можно познакомиться с имеющимися командами для решения задач и с примерами их использования. Примеры использования Mathematica в решении геометрических задач приведены в 2.

Система Mathematica обладает обширными возможностями решения обыкновенных дифференциальных уравнений и их систем в символьном виде. Для этого используется функция DSolve, в алгоритме которой реализовано большинство известных на сегодняшний день аналитических методов.

Пример 1. Решим дифференциальное уравнение и построим график решений при различных значениях постоянной.

Пример 2. Решим уравнение y’=\frac

Попытаемся решить уравнение с помощью функции DSolve:

В данном случае функция DSolve не может решить нелинейное уравнение. Поэтому запишем уравнение в виде:

и будем интегрировать обе части уравнения:

Следовательно, общее решение уравнения примет вид

-(-2+y^2)\cos y+2y\sin y=x-10\ln (1-x)+13\ln(2-x)+C

Пример 3. Решим дифференциальное уравнение и построим поле направлений и график решения уравнения при различных значениях константы.

Построим таблицу решений, заменив С[1] на a, где a изменяется от -2 до 2 с шагом 0,5:

Отобразим два графика одновременно и покажем, что векторы поля направлений являются касательными к решениям дифференциального уравнения:

Система Wolfram Mathematica используется для решения дифференциальных уравнений не только в математике, но и актуальна в других научных областях. Ее можно применять и в механике, в частности, для решения различных постановок задач, где в качестве математических объектов используются дифференциальные уравнения. В работах [6,7] рассмотрены уравнения движения мембран и акустических сред в виде обыкновенных дифференциальных уравнений. Для их решения может быть использована система компьютерной математики Wolfram Mathematica.

Читайте также

Математическая подготовка студентов в вузе в контексте будущей профессиональной деятельности

Использование прикладных программ при изучении математической статистики

Применение систем компьютерной математики при изучении комплексного анализа

Организация самостоятельной работы студентов в условиях информационно-образовательной среды вуза

Системы компьютерной математики в решении дифференциальных уравнений

Список литературы

  1. Букушева А.В. Использование Mathematica для описания геометрии динамических систем // Математика и ее приложения: фундаментальные проблемы науки и техники : сборник трудов всероссийской конференции, Барнаул, 24 — 26 ноября 2015. — Барнаул : Изд-во Алт. ун-та, 2015. С. 248-249.
  2. Букушева А.В. Применение Wolfram Language для выделения специальных классов почти контактных метрических структур // Компьютерные науки и информационные технологии : Материалы Междунар. науч. конф. — Саратов : Издат. центр.»Наука», 2016. С. 105-107.
  3. Букушева А.В. Использование систем компьютерной математики для решения геометрических задач сложного уровня // Информационные технологии в образовании: Материалы VI Всероссийской научно-практической конференции. – Саратов: ООО «Издательский центр «Наука»». 2014. – С. 76-77.
  4. Букушева А.В. Решение учебно-исследовательских задач с использованием систем компьютерной математики // Информационные технологии в образовании: Материалы VII Всеросс. научно-практ. конф. – Саратов: ООО «Издательский центр «Наука»», 2015. С.185-187.
  5. Букушева А.В. Учебно-исследовательские задачи в продуктивном обучении будущих бакалавров-математиков // Образовательные технологии. 2016. №2. С. 16-26.
  6. Вельмисова А.И. Распространение и отражение гармонических волн в плоском акустическом слое с гибкими стенками в случае разрыва упругих свойств на одной из стенок // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2010. Вып.12. С. 136-140.
  7. Вельмисова А.И., Вильде М.В., Кириллова И.В. Распространение и отражение гармонических волн в плоском акустическом слое с кусочно-неоднородными гибкими стенками // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2011. Т.11. №4. С. 68-73.

Цитировать

Зинина, А.И. Использование Wolfram Mathematica в решении дифференциальных уравнений / А.И. Зинина. — Текст : электронный // NovaInfo, 2016. — № 55. — С. 5-9. — URL: https://novainfo.ru/article/8754 (дата обращения: 21.02.2022).

Поделиться

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Соучредители СМИ: Долганов А.А., Майоров Е.В.

Задача Коши онлайн

Данная задача возникает при поиске частного решения дифференциального уравнения. Наш онлайн калькулятор, построенные на основе системы Wolfram Alpha, позволяет найти решение задачи Коши для различных типов дифференциальных уравнений. Чтобы начать работу, необходимо ввести данные своей задачи (дифференциальное уравнение и начальные условия) в калькулятор.

Найти решение задачи Коши для дифференциального уравнения:

при заданных начальных условиях:

При постановке задачи Коши, указываются так называемые начальные условия, позволяющие однозначно выделить искомое частное решение из общего. Эти условия включают в себя значения функции и всех её производных до включительно (где -порядок дифференциального уравнения), заданные в одной и той же точке .

Поясним вышесказанное на конкретном примере. Пусть нам требуется найти частное решение дифференциального уравнения:

удовлетворяющее начальным условиям:

Первым делом, используя различные методы (Бернули, вариации произвольной постоянной Лагранжа), сначала находим общее решение данного дифференциального уравнения:

Теперь, для поиска частного решения, нам необходимо использовать заданные начальные условия. Для этого, находим производную функции полученной ранее:

Далее, поставляем начальные условия в функцию и её производную :

Решая полученную систему уравнений получаем значения произвольных постоянных и :

Подставляем полученные результаты в общее решение дифференциального уравнения, в результате получаем искомое частное решение:

Другие полезные разделы:

Оставить свой комментарий:

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме


источники:

http://novainfo.ru/article/8754

http://mathforyou.net/online/calculus/cauchy/