Вольфрам альфа система уравнений с параметром

Online Systems of Equations Solver

Solve equations and systems of equations with Wolfram|Alpha

A powerful tool for finding solutions to systems of equations and constraints

Wolfram|Alpha is capable of solving a wide variety of systems of equations. It can solve systems of linear equations or systems involving nonlinear equations, and it can search specifically for integer solutions or solutions over another domain. Additionally, it can solve systems involving inequalities and more general constraints.

Learn more about:

Tips for entering queries

Enter your queries using plain English. To avoid ambiguous queries, make sure to use parentheses where necessary. Here are some examples illustrating how to ask about solving systems of equations.

Access instant learning tools

Get immediate feedback and guidance with step-by-step solutions and Wolfram Problem Generator

Learn more about:

What are systems of equations?

A system of equations is a set of one or more equations involving a number of variables.

The solutions to systems of equations are the variable mappings such that all component equations are satisfied—in other words, the locations at which all of these equations intersect. To solve a system is to find all such common solutions or points of intersection.

Systems of linear equations are a common and applicable subset of systems of equations. In the case of two variables, these systems can be thought of as lines drawn in two-dimensional space. If all lines converge to a common point, the system is said to be consistent and has a solution at this point of intersection. The system is said to be inconsistent otherwise, having no solutions. Systems of linear equations involving more than two variables work similarly, having either one solution, no solutions or infinite solutions (the latter in the case that all component equations are equivalent).

More general systems involving nonlinear functions are possible as well. These possess more complicated solution sets involving one, zero, infinite or any number of solutions, but work similarly to linear systems in that their solutions are the points satisfying all equations involved. Going further, more general systems of constraints are possible, such as ones that involve inequalities or have requirements that certain variables be integers.

Solving systems of equations is a very general and important idea, and one that is fundamental in many areas of mathematics, engineering and science.

Вольфрам альфа система уравнений с параметром

Достаточно войти на страницу wolframalpha набрать в текстовом поле свой запрос и нажать на кнопку «=»

(имеет всплывающую подсказку вычислить ) или просто нажать Enter .
Функционал Wolfram Alpha не ограничивается лишь поиском ответов на поставленные вопросы. С помощью этой системы можно, например, строить графики и сопоставлять различные данные, что намного наглядней и лучше воспринимается, чем просто текст. Кроме того, с помощью Wolfram Alpha можно производить математические операции, как элементарные (которые без проблем выполняет и Google), так и решать уравнения различной сложности. Также Wolfram Alpha умеет строить графики функций, вычислять значения синуса или косинуса и так далее.

Например можно решить вот такое уравнение :

а чтобы узнать, какое расстояние между Москвой и Тель-Авивом, нужно ввести в поле

и вот вам результат:

Один из минусов сервиса Wolfram Alpha – это его англоязычность…так что если хотите задать вопрос системе придется писать его на английском языке. Даже неизвестно, появится ли русскоязычная версия этой поисково-вычислительной системы.

Основные команды для Вольфрам Альфа

(Команды вводятся в строку Вольфрама — например выше. Все команды заканчиваются нажатием Enter)

1. Решение уравнений, построение графиков

  • Арифметические знаки плюс, минус, умножить, поделить +, — , *, / Примеры: 3*2, x*y, (a+b)/c
  • Возведение в степень «x в степени а» x^a. Примеры x^a, x**a, (a+b)^2, (a+b)**2, (a+b)^(2x+1)
  • Скобки. Действия в скобках ведутся первыми
  • Функции .sin(x), cos(x), tan(x)=sin(x)/cos(x), cotan(x)=cos(x)/sin(x), sec(x)=1/cos(x), cosec(x)=1/sin(x)
  • Функции log(x), exp(x), sinh(x), cosh(x), tanh(x), cotanh(x)
  • Корень квадратный из «х» sqrt(x) или x^(1/2)

Чтобы вычислить выражение, нужно его просто ввести. Например корень из 2 будет выглядеть как sqrt(2) или же 2^(1/2).

2. Чтобы решить уравнение, нужно просто его ввести

3. Чтобы построить график, нужно использовать команду plot

Например нарисуем с помощью Вольфрама функцию 2^(-x) cos(x). Это делается командой plot (график).

Чтобы построить несколько графиков на одной координатной плоскости (например для визуализации решения систем уравнений), при значении переменной x в интервале (A,B), нужно использовать команду

4. Чтобы собрать множители из двучлена (многочлена) f, наберите factor[f]

5. Чтобы развалить произведение f на слагаемые, используйте команду expand[f]

6. Чтобы упростить выражение f[x], наберите команду Simplify[f[x]]

Например упростить «е в степени догарифм х»:

Simplify[ exp[ log[x] ] ]

Вольфрам альфа: интегралы

Как работать с Wolfram Alpha

Основные операции

  • Сложение : a+b
  • Вычитание : a-b
  • Умножение : a*b
  • Деление : a/b
  • Возведение в степень : a^b

Примеры

  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).

Знаки сравнения

  • Меньше : : >
  • Равно : = или ==
  • Меньше или равно : =

Логические символы

  • И : &&
  • ИЛИ : ||
  • НЕ : !

Основные константы

  • Число : Pi
  • Число : E
  • Бесконечность : Infinity, inf или oo

Основные функции

  • : x^a

  • : Sqrt[x]
  • : x^(1/n)
  • : a^x
  • : Log[a, x]
  • : Log[x]
  • : cos[x] или Cos[x]
  • : sin[x] или Sin[x]
  • : tan[x] или Tan[x]
  • : cot[x] или Cot[x]
  • : sec[x] или Sec[x]
  • : csc[x] или Csc[x]
  • : ArcCos[x]
  • : ArcSin[x]
  • : ArcTan[x]
  • : ArcCot[x]
  • : ArcSec[x]
  • : ArcCsc[x]
  • : cosh[x] или Cosh[x]
  • : sinh[x] или Sinh[x]
  • : tanh[x] или Tanh[x]
  • : coth[x] или Coth[x]
  • : sech[x] или Sech[x]
  • : csch[x] или Csch[е]
  • : ArcCosh[x]
  • : ArcSinh[x]
  • : ArcTanh[x]
  • : ArcCoth[x]
  • : ArcSech[x]
  • : ArcCsch[x]

Решение уравнений

Чтобы получить решение уравнения вида достаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve[f[x]=0, x].

Примеры

  • Solve[Cos[x]+Cos[2x]+Sin[4x]=0,x] или Cos[x]+Cos[2x]+Sin[4x]=0;
  • Solve[x^5+x^4+x+1=0,x] или x^5+x^4+x+1=0;
  • Solve[Log[3,x^2+x+1]-Log[9,x^2]=0,x] или \Log[3,x^2+x+1]-Log[9,x^2]=0.

Если Ваше уравнение содержит несколько переменных, то запись: f[x, y,…,z]=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции и т. д. Чтобы получить решение уравнения вида по какой-либо одной из переменных, нужно написать в строке: Solve[f[x, y, …, z]=0, j], где — интересующая Вас переменная.

Примеры

  • Cos[x+y]=0 или Solve[Cos[x+y]=0,x] или Solve[Cos[x+y]=0,y];
  • x^2+y^2-5=0 или Solve[x^2+y^2-5=0,x] или Solve[x^2+y^2-5=0,y];
  • x+y+z+t+p+q=9.

Решение неравенств

Решение в Wolfram Alpha неравенств типа 0″ src=»http://upload.wikimedia.org/math/3/d/9/3d97eb56e02c2889dd20a89529548180.png» />, полностью аналогично решению уравнения . Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve[f[x]>0, x] или Solve[f[x]>=0,x].

Примеры

  • Cos[10x]-1/2>0 или Solve[Cos[10x]-1/2>0,x];
  • x^2+5x+10>=0 или Solve[x^2+5x+10>=0,x].

Если Ваше неравенство содержит несколько переменных, то запись: f[x, y,…,z]>0 или f[x, y,…,z]>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve[f[x, y,…,z]>0,j] или Solve[f[x, y,…,z]>=0,j], где — интересующая Вас переменная.

Примеры

  • Cos[x+y]>0 или Solve[Cos[x+y]>0,x] или Solve[Cos[x+y]>0,y];
  • x^2+y^3-5 =9.

Решение различных систем уравнений, неравенств и уравнений

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Сервис Wolfram Alpha поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции на отрезке нужно написать в строке Wolfram Alpha: Plot[f[x],]. Если Вы хотите, чтобы диапазон изменения ординаты был конкретным, например , нужно ввести: Plot[f[x],,].

Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:Plot[f[x]&&g[x]&&h[x]&&…&&t[x],].

Для того, чтобы построить график функции на прямоугольнике , нужно написать в строке Wolfram Alpha: Plot[f[x, y],,]. К сожалению, диапазон изменения аппликаты пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).

Математический анализ

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы

Для того, чтобы найти предел последовательности нужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Примеры

  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции при можно совершенно аналогично: Limit[f[x], x -> a].

Производные

Для того, чтобы найти производную функции нужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], ]. В том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: D[f[x, y, z,…,t], j], где — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], ], где означает тоже, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Интегралы

Для того, чтобы найти неопределенный интеграл от функции нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл так же просто: Integrate[f[x], ] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Дифференциальные уравнения и их системы

Чтобы найти общее решение дифференциального уравнения нужно написать в строке WolframAlpha: F[x, y, y’,y»,…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y’,y»,…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: , где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока-что не поддерживается.

Ошибки при работе с системой

Система может допускать некоторые ошибки при решении сложных задач [1] . К примеру, если попытаться решить неравенство , для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4) Примечания

Love Soft

Инструменты пользователя

Инструменты сайта

Боковая панель

Навигация

Загрузки всякие

Связь

Содержание

WolframAlpha

Wolfram Alpha — база знаний и набор вычислительных алгоритмов, вопросно-ответная система.

Вместо того, чтобы предоставлять ссылки на другие сайты, сервис собирает факты и цифры из разных источников и потом оперирует этими данными для отображения результатов поиска в виде таблиц, графиков и других иллюстраций.

Разработчик Стивен Вольфрам — британский физик, математик и бизнесмен, известный по программе компьютерной алгебры «Mathematica». Сервис запущен в мае 2009.

Построение графиков

График функции одной переменной — команда plot или синоним graph:

С указанием диапазона значений переменной:

Несколько функций в одной системе координат:

Графики действительной и мнимой частей функции:

График функции двух переменных (desmos трехмерные графики строить не умеет):

Графики комплекснозначных функций двух переменных:

Точки пересечения с осями:

Угловые точки графика функции (точки излома):

Числовые ряды — показывает решение на числовой оси в графическом виде и в виде интервалов:

Графики специальных функций:

Графики в полярной системе координат

Параметрические графики

Воспользуйтесь параметрическим графиком, если можете выразить координаты x, y или x, y, z в каждой точке кривой как функцию одного или более параметров. Например, окружность параметрически задается так: $x=sin(t), y=cos(t), t∈[0;2π]$

Графическое решение неравенств

Неравенства (desmos умеет решать неравенства, но конкретно это неравенство с кубом не смог решить):

Площади фигур

Площадь фигуры, ограниченной линиями:

Площадь фигуры, ограниченной замкнутой кривой:

Алгебра

Уравнения

Решить уравнение (в комплексных числах):

Решать уравнение с параметрами (выразить x через a,b,c):

Решить уравнение в целых числах (Диофантово уравнение):

Преобразовать выражение

Разложение многочлена на множители:

Выделение квадрата двучлена:

Числа

Если ввести число, например, 28, выдает всё об этом числе — простое ли оно, разложение на множители, перевод в двоичную систему, римские цифры, разложение в сумму квадратов и прочее.

Ввести число, затем нажать кнопку More digits — выдаст все числа от 01 до 99

Разложить на разряды, число прописью:

Периодическую дробь представить обычной:

Это рациональное/иррациональное число:

Последняя цифра числа:

Вычисления высокой точности:

Показать число или интервал на числовой оси:

Русские название цифр:

Название числа (число прописью):

Константы

Выдать 200 цифр константы:

Выразить число через константы:

Интервалы

Простые числа. Делители

Простые числа

Выдать все простые числа, меньшие 100:

Выдать миллионное простое число:

Простое ли число?

Таблица простых чисел с 4-го по 17-е:

Частичные суммы простых чисел

Выдать указанную пару простых чиел-близнецов:

Факторизация

Разложить на простые множители:

Показать все делители числа (не только простые):

Делится ли число на указанное число?

Наибольший общий делитель:

Все общие делители чисел:

Общее кратное чисел:

Наименьшее общее кратное чисел (least common multiple):

Можно использовать в выражениях:

Выборки

Мода, среднее выборки, медиана выборки

Функции

Область определения (и графически и как интервал):

Стационарные (критические) точки:

Уравнение касательной в точке:

Пределы

Производная

Сравнить функцию и ее производную

Интеграл

Дифференциальные уравнения

Геометрия

Угол на единичной окружности:

Правильный n-угольник (полигон):

Разное

Сгенерировать безопасный пароль:

Перевод единиц измерения:

Численные методы

Решить методом Ньютона:

Метод половинного деления (рисует диаграмму поиска корня):

Интегрирование методом трапеций:

Комбинаторика

compute binomial coefficients (combinations):

Эксперименты по теории вероятностей

Wolfram|Alpha позволяет сделать эксперименты более наглядными, заменяя монеты, карты и кубики их более абстрактными аналогами — математическими многосторонними игральными костями (dice).

двусторонняя «игральная кость» — 2-sided dice : этот эксперимент генерирует два случайных значения 1 и 2: 1 — соответствует гербу «Г», а 2 — решке «Р».

Есть кнопка «Roll again» — симулятор «бросания монеты».

Выше нее выводится график распределения вероятностей случайной величины и ее числовые характеристики: математическое ожидание (expected value), средне-квадратическое отклонение (standard deviation) и дисперсию (variance).

Эксперимент с двумя монетами имитируется с помощью следующего запроса:

Если «бросить» пять монет одновременно, то получим, кроме уже привычного результата — набора из пяти двоичных значений, еще и некоторые вероятности, в том числе, вероятности некоторых знаменитых карточных комбинаций (нажать кнопку More). Фулхауз, малый стрит, большой стрит, две пары.

Четырехсторонняя кость (4-sided dice) генерирует случайные значения 1, 2, 3 и 4. Эти значения можно интерпретировать, как четыре карточных масти.

Обычный игральный кубик:

Две шестигранные кости — считайте, что два кубика брошены одновременно.

Семь шестигранных кубиков одновременно! Здесь уже интересно посмотреть не только на результат виртуального эксперимента, но и на график статистического распределения вероятностей возможных значений суммы очков, выпавших на кубиках (в диапазоне от 7 до 42) — то, что в реальном эксперименте установить довольно…. утомительно.

Одна 9-гранная кость. «Бросить» такую кость — то же самое, что тянуть одну карту из колоды на 36 карт (четыре масти), если интересует, какая карта по рангу попадется.

Последовательности

Пытается распознавать последовательности:

Рекуррентную формулу преобразовать в обычную:

Аналитическая геометрия. Координаты

Прямая по двум точкам:

Построить прямую по точке пересечения с осью Oy и угловому коэффициенту:


источники:

http://www.sites.google.com/site/matenatikucozru/wolfram-alpha

http://xlench.bget.ru/doku.php/mat/progs/wolframalpha