Вольфрам уравнение прямой по двум точкам

WolframAlpha по-русски

Математика с WolframAlpha ® . Объяснения с примерами.

Прямая на плоскости в Wolfram|Alpha

Прямую на плоскости можно задать:

  • двумя точками;
  • точкой и направлением (угловым коэффициентом);
  • отрезками на осях (точками пересечения с осями координат).

Соответственно, аналитическая геометрия рассматривает основные задачи на прямую на плоскости, связанные с этими способами.

Первая из этих основных задач: найти уравнение прямой, проходящей через две данные точки и построить эту прямую.

Традиционный способ решения задач аналитической геометрии состоит в использовании известных уравнений. Так, на плоскости уравнение прямой, проходящей через две данные точки c координатами (a, b) и (c, d) имеет вид:

Основные характеристики такой прямой можно вычислить по координатам данных точек. Например, точка пересечения с осью абсцисс (Ох), точка пересечения с осью ординат (Оу) и угловой коэффициент прямой (наклон прямой) вычисляются по формулам, соответственно:

Расстояние между данными точками (a, b) и (c, d) вычисляется по формуле:

Координаты середины отрезка, соединяющего точки (a, b) и (c, d):

Wolfram|Alpha строит изображение прямой, проходящей через две данные точки, выводит уравнение этой прямой, а также все ее основные свойства по запросу

Отдельные свойства прямой, проходящей через две данные точки, можно получить по запросам:

Вторая задача — на уравнение прямой с угловым коэффициентом

Wolfram|Alpha «умеет» строить прямую по ее уравнению с угловым коэффициентом. Для этого нужно лишь задать параметры уравнения:

Третья задача — на уравнение прямой в отрезках на осях координат

Для построения прямой по ее уравнению в отрезках на осях координат Wolfram|Alpha использует такой запрос

Wolfram|Alpha может построить одновременно несколько прямых. Вот пара примеров:

Вывести уравнение прямой по координатам двух точек

По введенным пользователем координатам двух точек вывести уравнение прямой, проходящей через эти точки.

Общее уравнение прямой имеет вид y = kx + b . Для какой-то конкретной прямой в уравнении коэффициенты k и b заменяются на числа, например, y = 4x — 2 . Задача сводится именно к нахождению этих коэффициентов.

Так как координаты точки это значения x и y , то мы имеем два уравнения. Пусть, например, координаты точки А(3;2), а координаты B(-1;-1). Получаем уравнения:
2 = k*3 + b,
-1 = k*(-1) + b.
Решая полученную систему уравнений находим значения k и b :
b = 2 — 3k
-1 = -k + 2 — 3k
4k = 3
k = 3/4 = 0.75
b = 2 — 3 * 0.75 = 2 — 2.25 = -0.25
Таким образом, получается уравнение конкретной прямой, проходящей через указанные точки: y = 0.75x — 0.25.

Алгоритм решения данной задаче на языке программирования будет таков:

  1. Получить значения координат первой точки и присвоить их переменным, например x1 и y1 .
  2. Получить значения координат ( x2, y2 ) второй точки.
  3. Вычислить значение k по формуле k = (y1 — y2) / (x1 — x2) .
  4. Вычислить значение b по формуле b = y2 — k * x2 .
  5. Вывести на экран полученное уравнение.

Уравнение прямой, проходящей через две точки онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через две точки − примеры и решения

Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).

(1)

Подставив координаты точек A и B в уравнение (1), получим:

(Здесь 0 в знаменателе не означает деление на 0).

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).

(2)

Подставив координаты точек A и B в уравнение (2), получим:

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:


источники:

http://gospodaretsva.com/straight.html

http://matworld.ru/analytic-geometry/uravnenie-prjamoj-online.php