Вопросы по теме иррациональные уравнения

Открытый урок: «Иррациональные уравнения»

Тема: Иррациональные уравнения Цели урока:

1. Обобщить и систематизировать знания учащихся по данной теме, повторить методы решения иррациональных уравнений, познакомить с новыми нестандартными методами решения иррациональных уравнений, показать исторический характер теории иррациональности, проверить уровень сформированности умений и навыков учащихся по изучаемой теме.

2. Развивать операции мышления (обобщение, умение выделять главное, анализировать), внимание, навыки сотрудничества, чувство времени.

3. Воспитание ответственного отношения к изучению предмета, самостоятельности, познавательной активности, стремления к самосовершенствованию.

Тип урока: Обобщение и систематизация ранее изученного материала

Ход урока

I Организационный момент. Сообщение темы и цели урока. Здравствуйте, ребята. Добрый день, уважаемые учителя, приглашаю Вас на урок математики в 11 классе “Иррациональные уравнения”. Эйнштейн говорил так: “Мне приходится делить время между политикой и уравнениями. Однако, уравнения, по-моему, гораздо важнее. Политика существует для данного момента, а уравнения будут существовать вечно”. Как Вы знаете, прославился он именно уравнением, названным “Уравнение Эйнштейна”. Вот и мы займемся уравнениями. Обобщим знания по теме “Иррациональные уравнения”, повторим методы решения уравнений, алгоритмы решения, этими методами, познакомимся с новыми методами. Запишите в тетради число, тему урока.

На ваших партах лежат рабочие карты, подпишите их. Рабочая карта ученика 11 класса ________________________ Теория Кроссворд

Метод “пристального взгляда” Метод возведение в степень, равную показателю корня Метод введения новой переменной ИТОГ В них вы будете отмечать успешность выполнения заданий символами: “!” – владею свободно “+” — могу решать, иногда ошибаюсь “-” — надо еще поработать

2. Повторение и обобщение изученного материала.

2.1. Основные вопросы теории открытия иррациональности

А сейчас небольшая историческая справка (выходит учащийся и рассказывает наизусть):

История иррациональных чисел восходит к удивительному открытию Пифагорийцев ещё в VI веке до н.э.. А началось все, с простого, казалось бы, вопроса — каким числом выражается длина диагонали квадрата со стороной 1?

Пифагорийцы доказали, что — нельзя выразить отношением некоторых целых чисел m и n. — по их мнению вообще не было числом. Открыв новый математический объект, они пришли в полное замешательство. В основе всеобщей гармонии мира, считали они, должны лежать целые числа и их отношения. Никаких других чисел они не знали. И вдруг эта гармония рушится — существуют величины, которые отношением целых чисел, в принципе — не являются.

В переводе с латыни «irrationalis» — «неразумный». Любопытно, что в средневековой Европе наряду с «irrationalis» в ходу был ещё и другой термин «surdus» — «глухой» или «немой». Судя по такому названию, математикам средневековья иррациональные числа представлялись чем-то настолько «неразумным», что «ни сказать, ни выслушать». Удивление и досада, с которыми древние математики в начале восприняли иррациональные числа, впоследствии сменились интересом и пристальным вниманием к новым математическим объектам.

Ну а в наше время необходимость изучения решения иррациональных уравнений очевидна. Иррациональным уравнением выражаются формулы, описывающие многие физические процессы:

  • равноускоренное движение;
  • 1 и 2 космические скорости;
  • среднее значение скорости теплового движения молекул;
  • период радиоактивного полураспада и другие.

История развития теории иррациональности знает много ученых – исследователей. Назовем некоторых из них, отвечая на вопросы теории, которая является фундаментом, для решения иррациональных уравнений.

Первый кроссворд. 1. Что требуется для полученных значений переменной при решении иррациональных уравнений? (проверка) 2. Способ, которым проводится проверка решений иррациональных уравнений (подстановка) 3. Как называется знак корня? (радикал) 4. Сколько решений имеет уравнение х2 = а, если а 0? (два) 5. Как называется корень уравнения, который получается в результате неравносильных преобразований? (постороннний) 6. Корень, какой степени существует только из неотрицательного числа? (четной) Итак, впервые изображение корня ввёл Декарт, французский ученый. Им положено начало исследования важных свойств алгебраических уравнений.

Третий кроссворд. Кто же ввел современное изображение корня? Ответим на следующие вопросы. 1. Как называется равенство двух алгебраических выражений? (уравнение) 2. Как называют значение переменной, при котором уравнение обращается в верное числовое равенство (корень) 3. Какая черта личности поможет при решении иррациональных уравнений? (трудолюбие) 4. Какой должен быть взгляд на уравнения, чтобы, не вычисляя сказать ответ? (пристальный) 5. Как называют уравнения, если они имеют одни и те же корни или не имеют корней вообще? (равносильные) 6. Как называется иррациональное выражение, содержащее противоположное арифметическое действие? (сопряженное) Это Ньютон – английский физик, открывший основные законы природы, законы Ньютона. Он ввёл современное изображение корня. Мы повторили теорию решения иррациональных уравнений, которая является фундаментом для познания мира.

2.2. Основные методы решения иррациональных уравнений.

Иррациональные уравнения можно решать различными методами. 1. Какими основными методами решаются иррациональные уравнения? (Метод возведения в степень, равную показателю корня, метод пристального взгляда, метод введения новой переменной) 2. Расскажите алгоритм решения методом возведения в степень, равную показателю корня. 1) Возведём обе части уравнения в степень, равную степени корня. 2) Решим полученное уравнение. 3) Выполним проверку. 3. Расскажите алгоритм решения методом введения новой переменной. 1) Введём новую переменную. 2) Решим полученное уравнение. 3) Найдем значение искомой переменной. 4) Выполним проверку. 4. Какой этап содержат все эти методы? (Проверку) 5. Какой метод используется при решении иррациональных уравнений другими методами? (Метод возведения в степень, равную степени корня) 6.Какой метод предполагает устное решение? (Метод “пристального взгляда”?) 7. На каких свойствах иррациональных выражений основан этот метод? (Значение арифметического корня четной степени есть величина неотрицательная, а значит сумма, произведение и частное таких выражений будет величина неотрицательная)

2.3. Решение заданий методом пристального взгляда.

Ряд иррациональных уравнений можно решить методом ,,пристального взгляда,, суть которого заключается в очевидности корней или их явного отсутствия по причине разногласия с ОДЗ. Например:

Обобщающий урок алгебры в 11-м классе по теме «Иррациональные уравнения»

Разделы: Математика

Цель: Обобщить знания по теме: “Иррациональные уравнения”

Обучающиие.

  1. Обобщить и закрепить методы решения иррациональных уравнений.
  2. Познакомить с новым нестандартным методом решения иррациональных уравнений — мажоранта.

Развивающие.

  1. Развитие операций мышления (обобщение, анализа, выделение существенного). Развитие внимания.
  2. Развития навыков сотрудничества.

Воспитательные.

  1. Воспитание сознательного отношения к изучению алгебры.
  2. Воспитание патриотизма.
  3. Воспитание стремления к самосовершенствованию.

Ход урока

1. Организационный момент.

На уроке используется презентация (Приложение 1), показанная с помощью проектора.

“Мне приходится делить время между политикой и уравнениями.

Однако, уравнения, по-моему, гораздо важнее.

Политика существует для данного момента, а уравнения будут существовать вечно”.

Здравствуйте, ребята. Добрый день, уважаемые учителя, приглашаю Вас на урок алгебры в 11 классе “Иррациональные уравнения”.

Эйнштейн говорил так: “Мне приходится делить время между политикой и уравнениями. Однако, уравнения, по-моему, гораздо важнее. Политика существует для данного момента, а уравнения будут существовать вечно”.

Как Вы знаете, прославился он именно уравнением, названным “уравнение Эйнштейна”. Вот и мы займемся уравнениями:

Обобщим знания по теме: “Иррациональные уравнения”.

Повторим методы решения уравнений, алгоритмы решения этими методами, познакомимся с новым методом мажорант.

Запишите в тетради число, тему урока.

На ваших партах лежат рабочие карты, подпишите их.

Рабочая карта ученика 11 класса ________________________

кроссворд

“пристального взгляда”

возведение в степень, равную показателю корня3. Метод мажорантЧерты личностиИТОГ

В них вы будете отмечать успешность выполнения заданий символами:

“+” — могу решать, иногда ошибаюсь

“-” — надо еще поработать

2. Повторение и обобщение изученного материала.

2.1. Основные вопросы теории открытия иррациональности

Иррациональное в переводе с греческого “уму непостижимое, неизмеримое, немыслимое”. Открытие иррациональности опровергало теорию Пифагора, что “всё есть число”. Предание говорит, что ученик Пифагора, выдавший смертным эту тайну прогиб во время кораблекрушения, ниспосланного богами. Пифагорейцы, изгнавшие его из общины, еще при жизни соорудили ему могилу, как бы умершему.

История развития теории иррациональности знает много ученых – исследователей. Назовем некоторых из них, отвечая на вопросы теории, которая является фундаментом, для решения иррациональных уравнений.

(На левой части доски внизу прикрепляется слово “теория”)

2 слайд: На экране появляются вопросы с 1 по 6 –ой и первый кроссворд.

  1. Что требуется для полученных значений переменной при решении иррациональных уравнений? (проверка)
  2. Способ, которым проводится проверка решений иррациональных уравнений. (подстановка)
  3. Как называется знак корня?( радикал)
  4. Сколько решений имеет уравнение х 2 = а, если а 2 =0. (одно)
  5. Корень какой степени существует из любого числа? (нечетной )
  6. Как называется корень третей степени? (кубический)
  7. Сколько решений имеет уравнение х 2 =а, если а >0 ? (два)
  8. Как называется корень уравнения, который получается в результате неравносильных преобразований? ( постороннний)
  9. Корень какой степени существует только из неотрицательного числа? (четной)

И так впервые изображение корня ввёл Декарт, французский ученый. Им положено начало исследования важных свойств алгебраических уравнений.

4 слайд: На экране вопросы и следующий кроссворд.

Кто же ввел современное изображение корня? Ответим на вопросы с 13 по18.

  1. Как называется равенство двух алгебраических выражений? (уравнение)
  2. Как называют значение переменной, при котором уравнение обращается в верное числовое равенство (корень)
  3. Какая черта личности поможет при решении иррациональных уравнений? (трудолюбие)
  4. Какой должен быть взгляд на уравнения, что бы не вычисляя сказать ответ? (пристальный)
  5. Как называют уравнения, если они имеют одни и те же корни или не имеют корней вообще? (равносильные)
  6. Как называется иррациональное выражение, содержащее противоположное арифметическое действие? (сопряженное)

Это Ньютон – английский физик, открывший основные законы природы, законы Ньютона. Он ввёл современное изображение корня.

Мы повторили теорию решения иррациональных уравнений, которая является фундаментом для познания мира.

2.2. Основные методы решения иррациональных уравнений.

Иррациональные уравнения можно решать различными методами.

1. Какими основными методами решаются иррациональные уравнения?

(Метод возведения в степень, равную показателю корня, метод пристального взгляда, метод введения новой переменной)

5 слайд: Название основных методов решения иррациональных уравнений.

2. Расскажите алгоритм решения методом возведения в степень, равную показателю корня.

Возведём обе части уравнения в степень, равную степени корня.

Решим полученное уравнение.

3. Расскажите алгоритм решения методом введения новой переменной.

Введём новую переменную.

Решим полученное уравнение.

Найдем значение искомой переменной.

4. Какой этап содержат все эти методы?

5. Какой метод используется при решении иррациональных уравнений другими методами?

(Метод возведение в степень, равную степени корня)

6.Какой метод предполагает устное решение?

(Метод “пристального взгляда”?)

7. На каких свойствах иррациональных выражений основан этот метод?

(Значение арифметического корня четной степени есть величина неотрицательная, а значит сумма, произведение и частное таких выражений будет величина неотрицательная)

2.3. Решение заданий методом пристального взгляда.

Решите в группах методом “пристального взгляда” данные уравнения, которые составили ваши товарищи в домашней работе. Один учащийся от группы рассказывает у доски решение уравнений методом “пристального взгляда”.

Уравнения составлены на отдельных карточках формата А4. При ответе карточки крепят на магнитную доску.

Задание 1 группе:

Решить методом пристального взгляда:

+ = 5,

= 0.

Задание 2 группе:

Решить методом пристального взгляда:

+8 = 0,

+ = .

Задание 3 группе:

Решить методом пристального взгляда:

+ = 0,

+ = — 10.

Задание 1 группе:

Решить методом пристального взгляда:

2.4. Тест. Решение иррациональных уравнений различными способами.

Необходимость введения иррациональных чисел была описана в работе Евклида, по которой потом занимались все творцы современной математики:

Декарт и Ферма, Ньютон и Лейбниц, Колмогоров и Понтрягин.

Как называлась эта древняя книга, которая оказала наибольшее влияние на развитие европейской цивилизации?

Для ответа на этот вопрос выполним тест, в котором решите уравнения. Решения шести учащихся будут через сканер и проектор проецироваться на экран.

Решите уравнения в тетради, выписываете буквы, под которыми правильные ответы.

Решите уравнения и запишите буквы, под которыми находятся интервалы, содержащие корни уравнений

1.

В) [6;10]. Б) [20; 27]. Н) [11;18]. М) [30;+?).

2.

е) [20;25]; и) [1;6]; у) [10;16]; а) [17;18]

3.

ч) [-5; -3]; ф) (3; 4); р) [-2; 0]; с) (2; 3)

4.

а) [2; 4]; е) (-5; 2) и) (4; 16) ю)(- ?; — 4)

5.

к) (3; 5); м) [- 5; — 2]; п) (-2; 2]; л) (10; 70)

6. 2

а) [0; 2]; 0) (3; 81); у) (-5; -2); е) (-2; 0).

Именно в этом труде Евклид впервые заявил о необходимости введения новых неизведанных чисел.

2.5. Знакомство с методом мажорант.

Звучит музыка. Вы, конечно, узнали, что прозвучал музыкальный фрагмент к песне “День Победы” Давида Тухманова на слова Николая Харитонова. Эта песня посвящена Дню Победы в ВОВ нашего народа. В этом году все наши дела мы посвящаем 60-летию Победы. Прозвучавшая музыка носит торжественный, жизнеутверждающий, “мажорный” характер.

В математике есть метод решения иррациональных уравнений, который называется метод мажорант. (словарь)

Мажоранта и миноранта – (от франц.), две функции, значение первой из которых не меньше, а второй не больше соответствующих значений данной функции.

Мажорирование – нахождение точек ограничения функции (словарь).

Метод мажорант – метод оценки левой и правой части уравнения.

Метод мажорант используется для решения уравнений повышенной сложности, которые соответствуют 3 части ЕГЭ.

Ведем запись в тетради. Пример решения иррационального уравнения методом мажорант заполняя пропуски .

то М = f(х) и М = g(х).

Пример: (объяснение у доски)

Решить уравнение: х 2 – 6х + 11.

О Д З: х – 2 > 0 и 4 – х > 0, т.е. х > 2 и х > 4. Значит 2 2 – 6х = 11.

Графиком функции является парабола с вершиной А(3;2).Наименьшее значение функции у(3) = 2, т.е. у = х 2 — 6х + 11.

Рассмотрим левую часть уравнения. Введём функцию у = . С помощью производной найдём max функции, которая дифференцируема на (2;4).

у’ = .

у’ = 0, если 0,

Имеем g = 2, g (3) 2 – 6х + 11 = 2 и 2. решение этой системы х = 3. Это подтверждает проверка.

И так, по какому алгоритму решаются уравнения методом мажорант?

— Оценим левую часть

— Оценим правую часть

— Составим систему уравнений

Для достижения духовного совершенства мы познаем мир. Мы изучаем теорию, методы решения иррациональных уравнений.

Необходимость изучения решения иррациональных уравнений очевидна, иррациональным уравнением выражаются формулы, описывающие многие физические процессы:

  • Равноускоренное движение
  • 1 и 2 космические скорости
  • среднее значение скорости теплового движения молекул
  • период радиоактивного полураспада и другие.

А так же иррациональные уравнения использует статистика.

Но для достижения духовного совершенства необходимо еще воспитать в себе определенные качества.

Как Вы думаете какие?

Ответственность, самостоятельность, терпение, настойчивость, упорство, трудолюбие и другие.

Подведите итоги своей работы на уроке в своей рабочей карте.

Я желаю Вам достичь заветной цели, а главное стремиться к постоянному самосовершенствованию.

“Да, мир познания не гладок.
И знаем мы со школьных лет
Загадок больше, чем разгадок
И поискам предела нет!”

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3


источники:

http://urok.1sept.ru/articles/517295

http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye