Восемь способов решения одного тригонометрического уравнения

Восемь способов решения одного тригонометрического уравнения

Рейтинг: / 1
МБОУ «Средняя общеобразовательная школа №1 г.Буинска РТ»

Исследовательская работа по
математике

Восемь способов решения одного тригонометрического уравнения

Автор:
Халитов Айрат,
ученик 10 класса

Руководитель:
Камалова Эльмира Вазыховна,
учитель математики
первой квалификационной категории

Введение 2
Основная часть…………………………………………………………………… 3
Немного теории: 3
1-Й СПОСОБ. ПРИВЕДЕНИЕ УРАВНЕНИЯ К ОДНОРОДНОМУ ОТНОСИТЕЛЬНО СИНУСА И КОСИНУСА. 4
2-Й СПОСОБ. РАЗЛОЖЕНИЕ ЛЕВОЙ ЧАСТИ УРАВНЕНИЯ НА МНОЖИТЕЛИ. 5
3-й способ. Введение вспомогательного угла. 6
4-Й СПОСОБ. ПРЕОБРАЗОВАНИЕ РАЗНОСТИ (ИЛИ СУММЫ) ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ В ПРОИЗВЕДЕНИЕ. 7
5-й способ. Приведение к квадратному уравнению относительно одной из функций. 8
6-Й СПОСОБ. ВОЗВЕДЕНИЕ ОБЕИХ ЧАСТЕЙ УРАВНЕНИЯ В КВАДРАТ. 9
7-Й СПОСОБ. ВЫРАЖЕНИЕ ВСЕХ ФУНКЦИЙ ЧЕРЕЗ TG Х (УНИВЕРСАЛЬНАЯ ПОДСТАНОВКА) ПО ФОРМУЛАМ: 10
8-Й СПОСОБ. ГРАФИЧЕСКОЕ РЕШЕНИЕ. 11
Заключение 12
Использованная литература: 13

Введение
Слова известного французского писателя Э.Золя : «Весь смысл жизни заключается в бесконечном завоевании неизвестного; в вечном усилии познать больше» являются девизом моей жизни.Особенно мне нравятся уроки математики.
В этом учебном году на уроках математики мы изучали тригонометрические уравнения. Мы узнали о нескольких методах решения этих уравнений:
1) метод замены переменной;
2)метод разложения на множители;
3)универсальная подстановка.
Выполняя домашнее задание, я заинтересовался вопросом: существуют ли другие методы решения тригонометрических уравнений?
В кабинете математики я увидел подшивки старых газет «Математика», в которых прочитал о других методах решения тригонометрических уравнений.
В данном проекте я вам хочу рассказать о 8 способах решения одного тригонометрического уравнения, о которых я узнал.
Целью моей работы является изучение разных способов решения тригонометрических уравнений. Для достижения поставленной цели необходимо решить следующие задачи:
Ознакомиться с дополнительной литературой по данной теме.
Систематизировать знаний по теме.
Провести опрос в классе.
Проанализировать данные опроса.
Методами исследования являются опрос, сравнение, анализ и обобщение. Тему исследования, считаю, достаточно актуальной, поскольку эти знания помогут нам при подготовке к ЕГЭ: несколько заданий в части В и С связаны с тригонометрическими уравнениями.

ОСНОВНАЯ ЧАСТЬ.
НЕМНОГО ТЕОРИИ:

Тригонометрическое уравнение-это уравнения, в которых переменные содержатся под знаками тригонометрических функций. Простейшими тригонометрическими уравнениями называют уравнения вида: sin x = a, cos x = a, tg x = a, ctg x = a, где a – действительное число (a ∈ R).

При решении тригонометрических уравнений необходимо помнить следующие моменты:
При решении тригонометрических уравнений нельзя сокращать на переменную величину, это может привести к потере корней уравнения. Необходимо каждый множитель исследовать на решение.
При решении тригонометрических уравнений необходимо учитывать область допустимых значений (О.Д.З.).
При возведении обеих частей уравнения в четную степень могут появляться посторонние корни. Необходима отборка полученных решений, но это сложно, поэтому по возможности нужно обходиться без этой операции.
Потеря корней уравнения может произойти и от замены тригонометрических функций через тангенс tg x/2=t( универсальная тригонометрическая подстановка). Функция tg (х/2) не существует для х/2 = π/2 + πn, т.е. х ≠ π + 2πn. Но sin x и cos x определены в этих точках. Поэтому необходимо всегда проверять корни х = π + 2πn на решение отдельно

1-й способ. Приведение уравнения к однородному относительно синуса и косинуса.
Рассмотрим уравнение sin x – cos x =1.
Разложим левую часть по формуле двойного аргумента, а правую часть заменим тригонометрической единицей:
sin x = 2sin cos ; cos x = cos2 – sin2 ; 1 = sin2x + cos2 x.
2sin cos – cos2 + sin2 = sin2 + cos2
2sin cos – 2cos2 = 0
cos (sin – cos ) = 0
Произведение равно нулю, если хотя бы один из множителей равен нулю, а остальные при этом не теряют смысла, поэтому
cos = 0; или sin – cos = 0 – это однородное уравнение первой
=  /2 + k; степени. Делим обе части уравнения на cos (cos 0),
x =  + 2k, k Z; т.к. если cos = 0, то sin =0, что противоречит основному тригонометрическому тождеству.)
Получим: tg = 1, sin /cos =1
sin = cos
= + n;
x = +2n; n Z.
Ответ: x =  + 2k, k Z , x = +2n , n Z.

2-й способ. Разложение левой части уравнения на множители.
sin x – cos x =1.
sin x — (1 + cos x) = 0;
1 + cos x = 2 cos2 ;
sin x= 2 sin cos ;
2 sin cos — 2 cos2 = 0;
cos (sin – cos ) = 0. Далее так, как в первом способе.

3-й способ. Введение вспомогательного угла.
sin x – cos x =1.
В левой части вынесем — корень квадратный из суммы квадратов коэффициентов при sin х и cos х вынесем за скобки, получим
(sin x — cos x ) = 1;
sin x — cos x = ;
sin x cos — cos x sin = ; (по формуле sin cos — cos sin = sin ( — ) )
sin (x — ) = ;

1) x — = + 2n; x = + 2n, n Z;
2) x — = + 2k; x =  + 2k, k Z.
Ответ: x = + 2n, n Z; x =  + 2k, k Z.
4-й способ. Преобразование разности (или суммы) тригонометрических функций в произведение.

sin x – cos x =1.
Запишем уравнение в виде:
sin x – sin( — x )=1.
Применим формулу разности двух синусов:
sin  — sin  = 2 sin (+ )/2 cos ( — )/2.
2 sin (x — ) cos = 1;
2 sin (x — ) = 1;
sin (x — ) = ;
Далее так, как в третьем способе.

5-й способ. Приведение к квадратному уравнению относительно одной из функций.
sin x – cos x =1.
sin2x + cos2 x=1; sin x = ±√(1- cos^2 x) ;
sin x – cos x = 1 => ±√(1- cos^2 x) — cos x=1;
±√(1- cos^2 x) = 1 + cos x;
Возведём в квадрат обе части уравнения,после некоторых упрощений получим:
2cos2 x + 2cos x = 0; cos x (cos x +1) = 0;
Произведение равно нулю, если хотя бы один из множителей равен нулю, а остальные при этом не теряют смысла, поэтому
cos x =0; или cos x + 1 = 0;
x = + 2k, k Z; cos x = — 1 ;
x =  + 2n, n Z.
При решении уравнения обе части возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка.
Выполним её:
Полученные решения эквивалентны объединению трёх решений:
x = + 2k, k Z; x =  + 2n, n Z; x =- + 2m, m Z
Первое и второе решение совпадают с ранее полученными, поэтому не являются посторонними. Проверять не будем. Проверим:
x =- + 2m, m Z
Левая часть: sin (- + 2m) – cos (- + 2m) = sin (- ) – cos (- ) = -1 – 0 = -1. Правая часть: 1.
Следовательно, x =- + 2m, m Z – постороннее решение.
Ответ: x = + 2k, k Z; x =  + 2n, n Z.
6-й способ. Возведение обеих частей уравнения в квадрат.

sin x – cos x = 1
(sin x – cos x)2 = 1^2;
sin2x – 2sin x ∙ cos x + cos2 x = 1;
1 — 2 sin x cos x = 1; (2 sin x cos x = sin 2x – формула двойного угла)
sin 2x = 0;
2x = k;
x = k, k Z;
Полученное решение эквивалентно объединению четырех решений:
x = 2k, k Z;
x = + 2n, n Z;
x = + 2m, m Z;
x =- + l, l Z;
После проверки понятно, что первое и четвёртое решения — посторонние.
Ответ: x = + 2m, m Z , x = + 2n, n Z.
7-й способ. Выражение всех функций через tg х (универсальная подстановка) по формулам:
sin x = (2tg )/(1 + tg² ); cos x = (1 – tg² )/(1 + tg² ); tg x = (2tg )/(1 – tg² ) .
sin x – cos x =1
(2tg )/( 1 + tg² ) – (1 – tg² )/(1 + tg² ) = 1.
Умножим обе части уравнения на 1 + tg2 (1 + tg² ≠0, т.к. tg² ≥0.)
2tg – 1 + tg² = 1 + tg² ;
2tg = 2; tg = 1;
(sin )/(cos ) =1; sin = cos
= + n;
x = + 2n; n Z.
ОДЗ первоначального уравнения — всё множество R.
При переходе к tg из рассмотрения выпали значения, при которых tg не имеет смысла, т.е. x =  + 2k; k Z . Следует проверить, не является ли x =  + 2k; k Z решением данного уравнения.
Левая часть: sin( + 2k) – cos(π + 2k) = sin π – cos  = 0 – (-1) = 1
Правая часть: 1.
Значит, x =  + 2k; k Z является решением данного уравнения.
Ответ: x =  + 2k; k Z , x = + 2n; n Z.
8-й способ. Графическое решение.

sin x – cos x =1
На одном и том же чертеже построим графики функций, соответствующих левой и правой части уравнения. Абсциссы точек пересечения графиков являются решением данного уравнения.
у = sin х – график: синусоида.
у = (соs х + 1) – синусоида, смещённая на единицу вверх.

Ответ: x =  + 2n; n Z; x = + 2k; k Z.

После проделанной работы я убедился в том, что существует не один метод решения тригонометрического уравнения. Проведя опрос в классе, я узнал, что в среднем (около 50%) мои одноклассники предпочитают три метода решения тригонометрических уравнений — метод замены переменной, графический и разложение на множители.37% знают 4 метода, а 13% — только 2.

У меня возникло желание познакомить с другими методами и своих одноклассников. Когда я показал свой проект на элективном занятии классу, ребята были удивлены тем, что существует столько методов решения одного тригонометрического уравнения. Я думаю, что это занятие можно считать практическим выходом моей исследовательской работы.

Восемь способов решения одного тригонометрического уравнения.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Краевая научно-практическая конференция «Эврика» Малой академии наук учащихся Кубани Восемь способов решения одного тригонометрического уравнения Выполнен ученицей 11 «А» класса МОУ гимназии №40 Скопинцевой М. Г. Краснодара Научный руководитель- учитель математики МОУ гимназии№40 Шмитько И.А. Научный консультант-преподаватель ИНСПО Куб ГУ, канд. пед. наук Печкуренко Е.Н. 2008г.

Человеку, изучающему алгебру часто полезнее решить одну и ту же задачу тремя различными способами, чем решать три – четыре различные задачи. Решая одну задачу различными способами , можно путем сравнивания выяснить, какой из них короче и эффективнее. Так вырабатывается опыт. У. У. Сойер /английский математик и педагог XX века/

Восемь способов решения одного тригонометрического уравнения. 1.Приведение уравнения к однородному. 2.Разложение левой части уравнения на множители. 3.Введение вспомогательного угла. 4.Преобразование разности (или суммы) тригонометрических функций в произведение. 5.Приведение к квадратному уравнению. 6.Возведение обеих частей уравнения в квадрат. 7.Универсальная подстановка. 8.Графическое решение.

Задача. Решите уравнение различными способами: sin x – cos x = 1. ?

Способ первый. Приведение уравнения к однородному. sin x – cos x = 1 Это однородное уравнение первой степени. Делим обе части этого уравнения на т.к., если что противоречит тождеству Получим: sin x = 2 sin x/2 cos x/2, cos x = cos 2 x/2 +sin 2 x/2, 1 = sin 2 x/2 + cos2 x/2. , .

Способ второй. Разложение левой части уравнения на множители: sin x – cos x = 1 Далее так, как в первом способе.

Способ третий. Введение вспомогательного угла. sin x – cos x =1 В левой части вынесем — корень квадратный из суммы квадратов коэффициентов при sin х и cos х. = sin  /4 = cos  /4 sin cos — cos  sin  = sin (-)

Внимание! Эквивалентны ли результаты , полученные в рассмотренных способах решений данного уравнения sin x – cos x = 1? Покажем однозначность ответов. 1 –й способ x =  /2 + 2  n, n  Z x:  /2; 5  /2 ; 9 /2; -3  /2; -7  /2;… x =  + 2 n, b Z x =  ; 3  ; 5 ; —  ; -3 ;… 2-й способ x = /4 + ( -1)  /4 +  k, k  Z x:  /2; ; 5  /2 ; 3  ; 9/2; -; — 3/2; -3; -7/2…

Способ четвертый. Преобразование разности (или суммы) тригонометрических функций в произведение. sin x – cos x = 1 Запишем уравнение в виде: Применим формулу разности двух синусов. Далее так, как в третьем способе. 1 cos x = sin ( / 2 – x )

Способ пятый. Приведение к квадратному уравнению относительно одной функции. sin x — cos x = 1 Возведем в квадрат: или

Внимание! При решении уравнения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка. Сделаем проверку. Полученные решения эквивалентны объединению трёх решений Первое и второе решение совпадают с ранее полученными, поэтому не являются посторонними. Проверять не будем. Проверим: Левая часть: а правая часть уравнения равна 1, следовательно это решение является посторонним.

Способ шестой.Возведение обеих частей уравнения в квадрат. sin x – cos x = 1 sin2x — 2sin x cos x + cos2 x = 1, sin2 x + cos2x = 1 1 – 2sin x cos x = 1, 2sin x cos x = 0, Ответ: x =  n, n  Z, x=  /2 + n, n  Z. или cos x =0 x=  /2 + n, n  Z sin x = 0 x =  n, n  Z

Способ седьмой. Универсальная подстановка (выражение sin x и cos x через tg x/2). sin x – cos x =1 Выражение всех функций через tg х (универсальная подстановка) по формулам: Sin x –cosx = 1 Умножим обе части уравнения на

Внимание! Могли потерять корни.Необходима проверка! Область допустимых значений первоначального уравнения — всё множество R . При переходе к tg x/2 из рассмотрения выпали значения x, при которых tg x/2 не имеет смысла, т.е.x =  +  n, где n  Z . Следует проверить , не является ли x =  + n, где n  Z решением данного уравнения. Левая часть sin(π — 2πk) – cos(π + 2πk) = sin π – cos π = 0 – (-1) = 1 и правая часть равна единице. Значит, x =  +  n ,где n  Zявляется решением данного уравнения. Ответ: : x=  n, n  Z, x=  /2 + n, n  Z.

Способ восьмой. Графический способ решения. sin x – cos x = 1 На одном и том же чертеже построим графики функций, соответствующих левой и правой части уравнения. Абсциссы точек пересечения графиков являются решением данного уравнения, у = sin х — график синусоида. у = соs х + 1 – синусоида, смещённая на единицу вверх. sin x = cos x + 1

Проверь себя ! Решу, применяя разные способы решения одного и того же тригонометрического уравнения: 1. sin2x + cosx = 0 ; 2. 3 sin x – cos x = 0 3. sin6x + sin3x = 0; 4. sin2x +cos2x = 1; 5.  3sin x + cos x = 1.

sin2x + cosx = 0 sin2x =2sinxcosx, тогда 2sinxcosx + cosx = 0, cosx( 2sinx + 1 ) = 0, cosx = 0 или 2sinx + 1 = 0, х =  /2 +  n; n  Z; sinx = -1/2 x = ( -1)k+1  /6 + k, k  Z. Ответ: x =  /2 +  n, ; x = (-1)k+1  /6 +  k , где n Z , k  Z . Способ: разложение левой части уравнения на множители ( 2-й способ ).

sin2x + cosx = 0 cosx = sin ( /2 – x ), тогда : sin2x + sin ( /2 – x ) = 0, 2sin ( x/2 +  /4)cos (3x/2 —  /4 ) = 0. sin (x/2 +  /4) = 0 или cos (3x/2 —  /4 ) = 0, x/2 +  /4 =  n 3x/2 —  /4 =  /2 +  n x =-  /2 + 2  n x =  / 2+ 2  n/3 , n Z Ответ : x = —  /2 + 2  n , x =  / 2 + 2 n/3 , n Z . Способ : преобразование суммы тригонометрических функций в произведение ( 4 –й способ ) .

Сравним результаты двух способов решения уравнения sin2x + cosx = 0 2 –й способ: x =  /2 +  n; n Z, n =0, x =  /2 ( т. A ), n = 1, x = 3  /2 (т. В ), n =-1, x = —  /2 ( т. В ), n = 2, x =  /2 +2 (т.А) 2) x=(-1)k+1 /6 + k;k Z, k=0, x = —  /6 ( т.C ), k =1, x =  /6 +  (т.D ), k =-1, x =  /6 —  (т .D), k =2,x = —  /6+2  (т.C) 4-способ: 1) x = - /2 +  n, n Z , n =0, x= —  /2, (т .В ), n =1, x =-  /2 + 2 , (т .В ), n=-1, x= —  /2 –2  , (т. В ), n=2, x = —  / 2+ 4 ,(т .В ). 2) x =  / 2 + 2 n/3 , n Z . n =0, x=  /2 ( т.А ), n=1, x = 7  /6 ( т. D ), n= -1, x = —  /6 (т. А), n = 2, x = 11 / 6 (т.С ),…

Графическая иллюстрация этих решений на тригонометрическом круге Вывод : при обоих способах решений данного уравнения результаты одни и те же. 0 х у у А В С D

3 sin x – coos x = 0 cos x  0 в силу основного тригонометрического тождества sin2x + cos2x = 1. Разделим обе части уравнения на cos x. 3 tg x = 1, tg x = 1/ 3 , x =  /6 + n , n  Z. Ответ: x =  /6 +  n, n  Z. Cпособ :решение однородного уравнения ( 1-й способ ).

3 sin x – cos x = 0 3sin x – cos x = 0, разделим обе части уравнения на 2. 3/2sin x – ½cos x = 0, sin x cos  /6 – cos x sin  /6 = 0, sin (x —  /6) = 0, x —  /6 =  n , n  Z, x =  /6 +  n , n  Z. Ответ : x =  /6 +  n, n  Z. Способ: введение вспомогательного угла ( 3 –й способ ).

3 sin x – cos x = 0 3 sin x – cos x = 0, возведем обе части уравнения в квадрат. 3 sin2x – 2 3 sin x cos x + cos2x = 1, разделим обе части уравнения на cos2x  0. 3 tg2x – 23 tg x + 1 = 0 D = 0, tg x =  3/ 3; x =  /6 +  n, n  Z. Ответ 😡 =  /6 +  n, n  Z. Способ :возведение обеих частей уравнения в квадрат ( 6-й способ). уравнения в

3 sin x – cos x = 0  3 sin x – cos x = 0, 2 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 , 1 + tg 2 x/2 , 3 2 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 1 + tg 2 x/2 3 2 tg x/2 — 1 + tg 2 x/2 1 + tg 2 x/2 1 + tg 2 x/2  0, tg 2 x/2 + 2 3 tg x/2 — 1 = 0, tg x/2 = m, m 2 + 2 3 m – 1 =0, D = 0, m1 = — 3 — 2, m2 = — 3 + 2, 1) tg x = — 3 — 2, 2(- 3 — 2 ) — 2(3 + 2 ) — 2(3 + 2 ) — 1 1 +( — 3 — 2)2 8-4 3 4( 2+ 3 ) 2 , sin x = — 1/2, x = ( -1 ) k +1 /6 +  k, k  Z; 2) tg x = — 3 + 2, 2(- 3 + 2 ) — 2(3 — 2 ) — 2(3 — 2 ) 1 1 +( — 3 + 2)2 8-4 3 4( 2- 3 ) 2 , sin x = 1/2, x = ( -1 ) k  /6 +  k, k  Z. Примечание:решения можно объединить: x = ( -1 ) k  /6 +  k, k  Z. Ответ: x = ( -1 ) k  /6 +  k, k  Z. Способ: универсальная подстановка ( 7 –й способ ). sin x = cos x= — = = 0, =0, sin x= sin x = = = = = = =

sin 6x + sin 3x = 0 sin 6x + sin 3x = 0, 2 sin 3x cos 3x + sin 3x = 0, sin 3x ( 2 cos 3x + 1 ) = 0, sin 3x =0 , 2 cos 3x + 1 = 0, 3x =  n, n  Z, cos 3x = -½, x =  n/3, n  Z , x = 2  /9 + 2  n /3, n  Z. Ответ: x =  n/3, n  Z; x = 2  /9 + 2  n /3, n  Z. Способ:разложение левой части уравнения на множители ( 2 способ ).

sin 6x + sin 3x = 0 sin 6x + sin 3x = 0, 2sin 9x/2 cos 3x/2 = 0 , sin 9x/2=0 , cos 3x /2 = 0, 9x/2 =  n, n  Z, 3x /2 =  /2 +  n, n  Z, x = 2  n/9, n  Z; x =  /3 + 2  n/3, n  Z . Ответ: x = 2  n/9, n Z; x =  /3 + 2  n/3, n Z. Способ: преобразование тригонометрических функций в произведение ( 4-й способ ).

Сравним решения уравнения sin6x+ sin3x =0, полученные разными способами. Вывод: результаты решения данного уравнения разными способами совпадают

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1 2 sin x cos x + cos 2 x – sin2 x = sin 2x + cos 2x, 2 sin x cos x – 2 sin 2 x = 0, 2 sin x ( cos x – sin x ) = 0, sin x = 0, cos x – sin x = 0, x =  n, n  Z, tg x = 1, x =  /4 + n, n  Z. Ответ:  n, n  Z, x =  /4 + n, n  Z. Способ: Приведение уравнения к однородному.( 1-й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, sin2x – (1 – cos 2x ) = 1, 2 sin x cos x – 2 cos 2x/2 = 0, Далее так, как первым способом ( кадр № 27 ). Способ: разложение левой части уравнения на множители ( 2 – й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, sin 2x + sin ( /2 – 2x ) = 1, 2sin  /4 cos ( 2x —  /4 ) = 1, sin  /4 = 1/ 2 ,  2 cos ( 2x —  /4 )= 1 arksin (1 /  2 ) =  /4 . cos ( 2x —  /4 )= 1 /  2 , 2x —  /4 = arkcos (1 /  2 ) + 2  n, n  Z, 2x=  /4 arkcos( 1 /  2 ) + 2  n, n  Z, x=  /8  /8 +  n, n  Z. Ответ: x=  /8  /8 +  n, n  Z. Способ: преобразование суммы тригонометрических функций в произведение ( 4 –й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, разделим обе части уравнения на 2, 1/2 sin 2x + 1/ 2 cos 2x = 1/ 2 , cos /4 sin 2x + sin /4 cos 2x = 1/ 2, sin (2x + /4 ) = 1/ 2, 2x + /4 = (- 1)k  /4 +  k, kZ, 2x = — /4 + (- 1) k /4 +  k, kZ, x = —  /8 +(- 1)k  /8 +  k/2, kZ. Ответ: x = —  /8 +(- 1)k  /8 +  k/2, kZ. Способ:Введение вспомогательного угла (3й – способ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, Cos 2x =   ( 1 — sin 2 2x ) sin 2x   ( 1 — sin 2 2x ) = 1,   ( 1 — sin 2 2x ) = 1 – sin 2x, возведем обе части уравнения в квадрат, тогда 1 — sin 2 2x = 1 – 2 sin 2x + sin 2 2x , 2 sin 2 2x — 2 sin 2x = 0, 2 sin 2x (sin 2x — 1 ) = 0, sin 2x = 0, sin 2x — 1 = 0, 2x =  n, sin 2x = 1, x =  n/2, n  Z ; 2x =  /2 + 2  n, n  Z, x =  /4 +  n, n  Z. Ответ: x =  n/2, n  Z ; x =  /4 +  n, n  Z. Способ: приведение к квадратному уравнению относительно sin 2x ( 5 –й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, sin 2 2x + 2sin 2x cos 2x + cos 2x = 1, 2sin 2x cos 2x + 1 = 1, 2sin 2x cos 2x = 0, sin 2x = 0, cos 2x = 0 , 2x =  n, n  Z ; 2x =  / 2 + 2  n , n  Z, x =  n/2, n  Z ; x =  / 4 +  n , n  Z. Ответ:  / 2 + 2  n , n  Z; x =  / 4 +  n , n  Z. Способ : возведение обеих частей уравнения в квадрат ( 6 – й способ ).

sin 2x + cos 2x = 1 sin2 x +cos 2x = 0, 2 tg x 1 — tg 2 x 1 + tg 2 x , 1 + tg 2 x , 2 tg x 1 — tg 2 x 1 + tg 2 x 1 + tg 2 x 2 tg x +1 — tg 2 x –1 — tg 2 x — 0, 1 + tg 2 x/2  0, 2tg 2 x — 2 tg x = 0, 2tg x ( tg x – 1 ) = 0, tg x =0, tg x – 1 = 0, sin 2x = 0, sin 2x = 1, x =  n/2, n Z , 2x =  /2 + 2  n, n  Z, x =  /4 +  n, n Z. Ответ: x =  n/2, n Z ; x =  /4 +  n, n Z. Способ: универсальная подстановка ( 7 –й способ ). sin 2x = cos2 x = + = 0

 3 sin x + cos x = 1  3 sin x + cos x = 1,  3 /2sin x + 1/2cos x = 1/2, cos /6 sin x + sin  /6 cos x = 1/2 , Sin ( x +  /6 ) = 1 / 2 , x+  /6 = (- 1 ) k  /6 +  k, k Z, x = —  /6 +(- 1 ) k  /6 +  k, k Z, Ответ 😡 = —  /6 +(- 1 ) k  /6 +  k, k Z. Способ: введение вспомогательного угла ( 3-й способ).

 3 sin x + cos x = 1  3 sin x + cos x = 1, 2 3 sin x/2 cos x/2 + cos 2x/2 -sin 2x/2= cos 2x/2 + sin 2x/2, 2 3 sin x/2 cos x/2 — 2sin 2x/2 =0, 2 sin x/2 ( 3 cos x/2 — sin x/2 ) =0, sin x/2 = 0,  3 cos x/2 — sin x/2 = 0, sin x/2 =  3 cos x/2 , x/2=  n, n  Z, tg x/2 =  3 , x = 2 n, n  Z , x/2 =  /3 +  n, n  Z, x = 2  /3 + 2  n, n  Z. Ответ: x = 2 n, n  Z , x = 2 n, n  Z . Способ : приведение к однородному ( 1 –й способ ).

 3 sin x + cos x = 1  3 sin x + cos x = 1, 2 3 sin x/2cos x/2 = 1 – cos x, 1 – cos x = 2 cos 2 x/2 2 3 sin x/2cos x/2 = 2 cos 2 x/2, 2 3 sin x/2cos x/2 — 2 cos 2 x/2 = 0, 2 cos x/2 ( 3 sin x/2 — cos x/2) = 0, Далее решать так как в первом способе. Способ: разложение левой части уравнения на множители ( 2 –й способ).

 3 sin x + cos x = 1  3 sin x + cos x = 1, 3 sin2 x +2  3 sin x cos x +cos 2 x = 1, 2sin2 x +2  3 sin x cos x + (sin2 x +cos 2 x ) = 1, 2sin2 x +2  3 sin x cos x = 0, 2sinx ( sin x +  3 cos x) = 0, sinx = 0, sin x +  3 cos x = 0, x =  n , n Z, tg x = - 3 , x = —  /3 +  n, n  Z . Ответ : x =  n , n Z, x = —  /3 +  n, n  Z . Способ : возведение обеих частей уравнения в квадрат ( 6 – й способ ).

 3 sin x + cos x = 1  3 sin x +cos x = 0, 2  3 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 , 1 + tg 2 x/2 , 2 3 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 1 + tg 2 x/2 23 tg x/2 + 1 — tg 2 x/2 = 1 + tg 2 x/2 , так как 1 + tg 2 x/2  0, 2 tg 2 x/2 + 23 tg x/2 = 1, 2 tg x/2 (tg x/2 + 3 ) = 0, tg x/2 = 0 , , tg x/2 = - 3 , x/2 =  n , n Z, x/2 = —  /3 +  n , n Z, x = 2 n , n Z, x = — 2 /3 + 2 n , n Z. Ответ: x = 2 n , n Z, x = — 2 /3 + 2 n , n Z. Способ : универсальная подстановка (7 – й способ ). sin x = cos x = + =1,

Подведем итоги 1.Приведение уравнения к однородному. 2.Разложение левой части уравнения на множители. 3.Введение вспомогательного угла. 4.Преобразование разности (или суммы) тригонометрических функций в произведение. 5.Приведение к квадратному уравнению. 6.Возведение обеих частей уравнения в квадрат. 7.Универсальная подстановка. 8.Графическое решение. 12345678 1 sin2x + cosx = 0 2 sin6x + sin3x = 0 3 sin6x + sin3x = 0 4 sin2x +cos2x = 1 5 3sin x + cos x = 1

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 956 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 685 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 572 304 материала в базе

Другие материалы

  • 09.09.2015
  • 725
  • 0
  • 09.09.2015
  • 519
  • 0
  • 09.09.2015
  • 577
  • 0
  • 09.09.2015
  • 545
  • 0
  • 09.09.2015
  • 3221
  • 5
  • 09.09.2015
  • 1310
  • 10
  • 09.09.2015
  • 721
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 09.09.2015 5872
  • PPTX 1.4 мбайт
  • 30 скачиваний
  • Рейтинг: 3 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Шмитько Ирина Анатольевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 5 месяцев
  • Подписчики: 0
  • Всего просмотров: 9592
  • Всего материалов: 7

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Количество бюджетных мест в вузах по IT-программам вырастет до 160 тыс.

Время чтения: 2 минуты

В школах Хабаровского края введут уроки спортивной борьбы

Время чтения: 1 минута

В России действуют более 3,5 тысячи студенческих отрядов

Время чтения: 2 минуты

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Восемь способов решения тригонометрического уравнения

Разделы: Математика

Класс: 10

Тема: Восемь способов решения одного тригонометрического уравнения.

Цели урока: Актуализация знаний, умений и навыков учащихся по темам“Тригонометрические формулы” и “Решение тригонометрических уравнений”. Развитие навыка применять знания в новых ситуациях. Развитие творческого математического мышления, исследовательских навыков учащихся.

  1. Рассмотреть различные способы решения одного уравнения (приведение уравнения к однородному; разложение левой части на множители; введение вспомогательного угла; преобразование разности (или суммы) тригонометрических функций в произведении; приведение к квадратному уравнению относительно одной из функций; возведение обеих частей уравнения в квадрат; выражение sin x и cos х через tg х/2 (универсальная подстановка);графическое решение).
  2. Развитие коммуникативных навыков (работа в группах, взаимопомощь, взаимоконтроль).


источники:

http://infourok.ru/vosem-sposobov-resheniya-odnogo-trigonometricheskogo-uravneniya-405964.html

http://urok.1sept.ru/articles/414172