Вращение колеса вокруг неподвижной оси задано уравнением

Вращение колеса вокруг неподвижной оси задано уравнением

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО КИНЕМАТИКЕ

Кинематика вращения тела вокруг неподвижной оси

1. Краткие сведения из теории

Уравнение вращательного движения твердого тела вокруг неподвижной оси имеет вид

. (40)

Отсчет угла ведется от выбранного начала. При этом углам, отложенным в направлении движения часовой стрелки, придается знак “минус”, а углам противоположного направления – знак “плюс”.

Угол поворота выражается в радианах. Иногда угол поворота определяется числом оборотов N. Зависимость между и N следующая .

Угловая скорость тела:

(41)

Знак производной дает возможность установить происходит ли вращение тела в положительном направлении отсчета угла поворота (знак “плюс”) или в обратную сторону (знак “минус”). Единица измерения угловой скорости – радиан в секунду (или 1/с).

Иногда угловую скорость характеризуют числом оборотов в минуту и обозначают буквой n . Зависимость между и n имеет вид

Угловое ускорение тела:

(42)

Знак производной дает возможность установить является ли вращение тела в данный момент времени ускоренным или замедленным. Если знаки и одинаковы, тело вращается ускоренно, а если их знаки различны – замедленно. Единица измерения углового ускорения – радиан на секунду в квадрате (или 1/с 2 ).

Траекториями точек тела, не лежащих на оси вращения, являются окружности с центрами на оси вращения и радиусами, равными кратчайшему расстоянию от этих точек до оси вращения.

Модуль скорости любой точки тела, находящейся на расстоянии h от оси вращения (рис. 18), определяется по формуле

. (43)

Направлена скорость точки по касательной к описываемой точкой окружности в сторону движения.

Ускорение любой точки тела состоит из двух составляющих – вращательного и осестремительного ускорений:

.

Модуль вращательного ускорения точки определяется по формуле

. (44)

Вращательное ускорение направлено по касательной к описываемой точкой окружности в ту же сторону, что и его скорость, если вращение тела ускоренное (рис. 18, а) и в сторону, противоположную скорости, если вращение замедленное (рис.18, б).

Модуль осестремительного ускорения определяется по формуле

. (45)

Осестремительное ускорение всегда направлено по радиусу окружности от точки к центру окружности (рис. 18).

Модуль полного ускорения точки определяется по формуле

(46)

2. Основные типы задач кинематики вращения тела вокруг оси

В зависимости от того, что задано в условии задачи и что требуется определить, различают следующие два основных типа задач.

1. Исследуется движение тела в целом. В этих задачах вначале нужно получить законы (40)–(42) и, используя связь между ними, определить требуемую величину (см. примеры 17 и 18).

2. Требуется определить скорости и ускорения отдельных точек тела. Для решения задач этого типа вначале надо установить кинематические характеристики движения всего тела в целом, т.е. найти , и . После чего по формулам (43), (44), (45), (46) определить скорости и ускорения точек тела (см. пример 19).

Пример 17. Пропеллер самолета, делающий 1200 об / мин , после выключения двигателя останавливается через 8 с. Сколько оборотов сделал пропеллер за это время, если считать его вращение равнозамедленным?

Вначале получим законы вращения пропеллера (40), (41) и (42). По условию задачи пропеллер вращается равнозамедленно , из этого следует, что

.

, (47)

(48)

Начальной угловой скоростью при замедленном вращении будет та, которую пропеллер имел до выключения двигателя. Следовательно, . В момент остановки при t1 = 8 сек. угловая скорость тела . Подставляя эти значения в уравнение (47), получим

Отсюда

Если обозначить число сделанных пропеллером за время t1 оборотов через N1, то угол поворота за то же время будет равен

.

Подставляя найденные значения и в уравнение (48), получим

Отсюда оборотов.

Пример 18. Найти закон вращения тела вокруг оси, если известны следующие данные: угловая скорость изменяется пропорционально t 2 , начальный угол поворота рад, для заданного момента времени t1 = 3 с угловое ускорение 1/с 2 .

По условию задачи модуль угловой скорости изменяется пропорционально t 2 . Обозначая неизвестный коэффициент пропорциональности буквой k , имеем

. (49)

Найдем , беря производные по времени от обеих частей равенства (49),

Определим коэффициент k из условия, что при t1 = 3 сек. угловое ускорение 1/с 2 : или

Подставляя значение k в уравнение (49), получим

Учитывая, что , будем иметь

Умножая обе части этого уравнения на dt и интегрируя, находим

В начальный момент при t = 0, = 2 рад, следовательно, c = 2.

Таким образом, радиан.

Пример 19. В период разгона ротор электродвигателя вращается по закону , где t в сек, в рад.

Определить в конце 4-й секунды линейную скорость, вращательное, осестремительное и полное ускорения точки, лежащей на ободе ротора, если диаметр ротора D = 40 см .

По заданному уравнению вращения ротора находим его угловую скорость и угловое ускорение , .

Подставляя значение t1 = 4 сек в выражение для и , найдем

1/с,

1/с 2 .

Определим модули линейной скорости, вращательного и осестремительного ускорений в этот же момент времени по формулам (43), (44) и (45)

Модуль полного ускорения точки обода ротора определим по формуле (46)

3. Определение скоростей и ускорений в случаях, когда вращающееся тело входит в состав различных механизмов

Рассмотрим механизмы с поступательным и вращательным движением звеньев. Решение задачи начинают с определения скоростей точек того звена, для которого движение задано. Затем рассматривают звено, которое присоединено к первому звену и т.д. В результате определяют скорости точек всех звеньев механизма. В такой же последовательности определяют и ускорения точек.

Передача вращения от одного вращающегося тела, называемого ведущим, к другому, называемому ведомым, может осуществляться при помощи фрикционной или зубчатой передачи (рис. 19).

Во фрикционной передаче вращение передается вследствие действия силы трения в месте контакта соприкасающихся колес, в зубчатой передаче – от зацепления зубьев. Оси вращения ведущего и ведомого колес могут быть параллельными (рис. 19, а, б) или пересекаться (рис. 19, в). В рассмотренных случаях линейные скорости точек А соприкасания колес одинаковы, их модули определяются так:

. (50)

Отсюда . (51)

То есть угловые скорости колес фрикционной или зубчатой передачи обратно пропорциональны радиусам колес.

При преобразовании вращательного движения в поступательное (или наоборот) часто используют зацепление зубчатого колеса с зубчатой рейкой (рис. 20). Для этой передачи выполняется условие: .

Кроме фрикционной и зубчатой передач, существует передача вращения при помощи гибкой связи (ремня, троса, цепи) (рис. 21).

Так как модули скоростей всех точек ремня одинаковы и ремень не скользит по поверхностям шкивов, то соотношения (50) и (51) относятся и к ременной передаче.

Пример 20. В механизме домкрата при вращении рукоятки ОА шестерни 1, 2, 3, 4, 5 приводят в движение зубчатую рейку ВС домкрата (рис. 22).

Определить скорость рейки, если рукоятка ОА делает 30 оборотов в минуту ( n = 30 об /мин). Числа зубцов шестерен: z1 = 6, z2 = 24, z3 = 8, z4 = 32; радиус пятой шестерни r5 = 4 см .

Так как рукоятка ОА жестко соединена с шестерней 1, то последняя делает тоже 30 об /мин или

Модули скоростей точек соприкасания зубчатых колес 1 и 2 одинаковы для точек обоих колес и определяются по формуле (50)

Отсюда (см. также (51)).

Так как числа зубьев пропорциональны радиусам колес, то .

Отсюда

Шестерни 2 и 3 жестко соединены между собой, поэтому

Для находящихся в зацеплении колес 3 и 4 на основании (51) можно записать

Отсюда

Шестерни 4 и 5 жестко соединены между собой, поэтому

Модули скоростей точек соприкосновения зубчатой рейки ВС и шестерни 5 одинаковы, поэтому

или

Пример 21. Рейка 1, ступенчатое колесо 2 с радиусами R 2 и r 2 и колесо 3 радиуса R 3 , скрепленное с валом радиуса r3, находятся в зацеплении; на вал намотана нить с грузом 4 на конце (рис.23). Рейка движется по закону

Дано: R 2 =6 см, r2=4 см, R3=8 см, r3=3 см, ( S — в сантиметрах, t — в секундах), А — точка обода колеса 3, t 1 =3 с. Определить: , , , в момент времени t = t1.

Указания. Пример 21 — на исследование вращательного движения твердого тела вокруг неподвижной оси. При решении задачи учесть, что, когда два колеса находятся в зацеплении, скорость точки зацепления каждого колеса одна и та же, а когда два колеса связаны передачей, то скорости всех точек ремня и, следовательно, точек, лежащих на ободе каждого из этих колес, в данный момент времени численно одинаковы, при этом считается, что ремень по ободу колес не скользит.

Условимся обозначать скорости точек, лежащих на внешних ободах колес (радиуса R 1 ), через V1, а точек, лежащих на внутренних ободах (радиуса r 1 ), через U1.

1. Зная закон движения рейки 1, находим ее скорость:

. ( 52 )

Так как рейка и колесо 2 находятся в зацеплении, то V 2 = V1 или . Но колеса 2 и 3 тоже находятся в зацеплении, следовательно, или . Из этих равенств находим:

, . (53)

Тогда для момента времени t1 = 3 сек. получим = 6,75 с -1 .

2. Определяем V 4 . Так как , то при t1=3 c ек . V 4 = 20 ,25 см/с.

3. Определяем . Учитывая второе из равенств (53), получим .

Тогда при t1 = 3 сек. = 4,5 с -2 .

4. Определяем . Для точки А , где численно , . Тогда для момента времени t1 = 3 сек. имеем = 36 см/с2, = 364,5 см/с2.

= 366,3 см/с 2 ,

Все скорости и ускорения точек, а также направления угловых скоростей показаны на рис.2.

Ответ: , см/ с , , .

Адрес: Россия, 450071, г.Уфа, почтовый ящик 21

Вращение колеса вокруг неподвижной оси задано уравнением

Вращение тела вокруг неподвижной оси задано уравнением `varphi = 2t — 4t^3` (`varphi`- в рад, t — в с). Начало вращения тела при `t = 0` Положительные углы отсчитываются в направлении стрелки (см. рис.) В каком направлении поворачивается тело в момент времени `t = 5с`?

Вращение тела вокруг неподвижной оси задано уравнением `varphi= Asin pit` (`varphi` — в рад, t — в с). Начало вращения тела при `t = 0` Положительные углы отсчитываются в направлении стрелки (см. рис.) В каком направлении поворачивается тело в момент времени` t = 1,25с`?

Тело вращается вокруг неподвижной оси с угловым ускорением `beta = 2t^2` В начальный момент времени тело покоится Определить закон изменения угловой скорости тела (`omega`- в рад/с, `beta` — в рад/`с^2` `t` — в с)

Движение точки по окружности описывается уравнением `s = 2t^3` (s — в м, t — в с). Как изменяется со временем угол между векторами полного и тангенциального ускорения точки?

Какие из перечисленных выражений совпадают в случае свободного падения тела с выражением `(dv)/(dt)` (`vectau` — единичный вектор, касательный к траектории и направленный по движению)

Применима ли для вычисления угла поворота тела формула `varphi = omega * t` в случаях: (`omega` — в рад/ с, t- в с)

Вращение тела вокруг неподвижной оси задано уравнением `varphi = 2pi(6t — 3t^2)` (`varphi` — в рад, t-вс). Начало вращения тела при `t = 0`. Сколько оборотов сделает тело до момента изменения направления вращения?

Человек шёл из деревни в город со скоростью `5(км)/ч`. Обратно он возвращался с покупками той же дорогой, но со скоростью `3(км)/ч` . Определите в `(км)/ч` среднюю скорость пешехода за всё время движения.

Движение точки М (см. рис.) задано уравнением `x = 2t^2 — 4t^3` (x — в м, t — в с). Начало движения точки при ` t = 0`. Указать направления движения точки в следующие моменты времени:

Математический маятник совершает гармонические колебания. Отличны ли от нуля в средней точке траектории маятника

Прямолинейное движение материальной точки задано уравнением `x = 3t — 4t^3` (x — в м, t — в с). Начало движения точки при `t = 0`. Как изменяется модуль скорости в следующие моменты времени:

Математический маятник совершает гармонические колебания. Отличны ли от нуля в крайней точке траектории маятника.

Прямолинейное движение материальной точки задано уравнением `x = 20t — 5t^2` (x-в м, t — в с). Начало движения точки при ` t = 0`. Совпадают ли координата и пройденный точкой путь в следующие моменты времени:

Два грузовика движутся по прямому участку дороги: первый — со скоростью `vecupsilon`, второй — со скоростью `-4vecupsilon`. Какова скорость второго грузовика относительно первого?

Два грузовика движутся по прямому участку дороги: первый — со скоростью `vecupsilon`. второй — со скоростью `3vecupsilon` Модуль скорости первого грузовика относительно второго равен .

Прямолинейное движение материальной точки задано уравнением `x = 3t — t^2` (x — в м, t — в с). Начало движения точки при `t = 0`. Достигнет ли точка следующих координат:

Точка движется равномерно по окружности. Начало её радиус-вектора `vectau` совпадает с центром окружности. Отличны ли от нуля выражения:

Какой знак связывает выражения `abs((dvecupsilon)/(dt))` и `abs((dupsilon)/(dt))` при произвольном движении точки?

Применима ли для вычисления углового ускорения тела формула `beta =omega/t` в случаях: (`omega` — в рад/с: t — в с)

Является ли движение точки обязательно прямолинейным в следующих случаях:

Можно ли утверждать, что точка движется без ускорения в случаях:

Вращение тела вокруг неподвижной оси задано уравнением `varphi = Asin((pit)/4)` — в рад, t — в с). Начало вращения тела при t = 0 Как изменяется величина угловой скорости в следующие моменты времени:

Скорости и ускорения точек вращающегося тела

Тело вращается вокруг точки О. Определим параметры дви­жения точки А, расположенной на расстоянии r а от оси вращения (рис. 11.6, 11.7).

Примеры решения задач

Пример 1. По заданному графику угловой скорости (рис.11.8)определить вид вращательного движения.

Решение

1. Участок 1 — неравномерное ускоренное движение,

2. Участок 2 — скорость постоянна — движение равномерное, ω = const.

3. Участок 3 — скорость убывает равномерно — равнозамедленное движение, е = ω /

Число оборотов за 30 с:

2. Определяем время до полной остановки.

Скорость при остановке равна нулю, ω = 0.

Пример 5. Маховое колесо вращается равномерно со скоро­стью 120 об/мин (рис. 11.10). Радиус колеса 0,3 м. Определить ско­рость и полное ускорение точек на ободе колеса, а также скорость точки, находящейся на расстоянии 0,15 м от центра.

Решение

Касательное ускорение точки A atA = 0; нормальное ускорение точки А аnA = ω 2 rA

апA = (12,56) 2 • 0,3 = 47,3м/с 2 . 5. Полное ускорение точек на ободе колеса

Пример 6. Точка начала двигаться равноускорено по прямой из состояния покоя и через 25 с ее скорость стала равна 50 м/с. С этого момента точка начала равнозамедленное движение по дуге окружности радиуса г = 200 м и через 20 с ее скорость снизилась до 10 м/с. После этого точка продолжила свое движение с этой скоростью по прямой и через 5 с внезапно остановилась.

Определить: 1) среднюю скорость точки на всем пути;

2) полное ускорение точки через 10 с после начала ее равнозамедленного движе­ния по окружности.

Решение

1. Представим траекторию движения точки, как пока­зано на рис. 5. Весь путь, пройденный точкой, разбиваем на участки равноускоренного (по отрезку АВ), равнозамедленного (по дуге ВС) и равномерного (по отрезку CD) движения.

2. Рассмотрим движения точки по отрезку АВ:

3. Рассмотрим движение точки по дуге ВС:

4. Рассмотрим движение точки на отрезке CD:

5. Определим среднюю скорость точки на всем пути по траектории движения ABCD (см. рис. 5):

tABCD = tAB + tBC + tCD = 25 + 20 + 5 = 50 c

6. Определим значение полного ускорения точки через 5 с после начала равнозамедленного движения (см. положение К на рис. 5)

Пример 7.Тело начало вращаться из состояния покоя и через 15 с его угловая скорость достигла 30 рад/с. С этой угловой скоростью тело вращалось 10 с равномерно, а затем стало вращаться равнозамедленно в течение 5 с до полной остановки.

1) число оборотов и среднюю угловую скорость тела за все время вращения;

2) окружную скорость точек тела, расположен­ных на расстоянии r = 0,5 м от оси вращения тела через 5 с после начала движения.

Решение

1. Разграничим вращательное движение данного тела на участки равноускоренного, равномерного и равнозамедленного дви­жения. Определим параметры вращательного движения тела по этим участкам.

2. Равноускоренное вращение (участок 1):

3. Равномерное вращение (участок II):

4. Равнозамедленное вращение (участок III):

5. Определим полное число оборотов тела за все время вращения:

6. Определим среднюю угловую скорость тела за все время враще­ния:

7. Определим окружную скорость точек тела, расположенных на расстоянии r = 0,5 м от оси вращения через 5 с после начала движения тела:

Пример 8. Диск радиусом R = 2 м вращается вокруг неподвижной оси согласно уравнению

(φ — в радианах, t — в секундах). Определить скорость и ускорение точки поверхности диска в моменты времени t1 = 0 и t2 = 2 с.

Решение

Для определения скорости и ускорения точки необходимо знать угловую скорость и угловое ускорение диска.

Уравнение изменения угловой скорости диска:

Уравнение изменения углового ускорения диска:

Определим угловую скорость и угловое ускорение диска в моменты времени t1 = 0 и t2 = 2 с:

Определим скорость точки поверхности диска в ука­занные моменты времени:

Определим нормальное и касательное ускорения точки поверхности диска в моменты времениt1 и t2:

Пример 9. Точка А, лежащая на ободе равно­мерно вращающегося шкива, движется со скоростью v = 2 м/с и нормальным ускоре­нием ап = 5 м/с 2 . Определить ра­диус шкива OA и величину угло­вой скорости (рис. 1.46).

Решение

Здесь для решения следует воспользоваться известны­ми соотношениями для линейной скорости и нормального ускорения точек вращающегося тела:

Если второе уравнение разделить на первое, найдем угловую скорость вращения шкива:

Пример 10. Шарик А (рис. 1.47), подвешенный на стержне OA, колеблется в вертикальной плоскости около неподвижной горизонтальной оси О согласно уравнению

(φ — в радианах, t — в секундах).

1. Ближайшие моменты времени, соответствующие максимальным отклонениям стержня OA от вертикали OC вправо и влево, а также значение максимальных углов отклонения.

2. Ближайший момент времени после начала движе­ния, при котором нормальное ускорение шарика равно нулю.

3. Ближайший момент времени, при котором касатель­ное ускорение шарика равно нулю.

4. Полное ускорение шарика при t = 1,5 с и угол, образованный вектором ускорения со стержнем OA.

Решение

Стер­жень OA совершает вращательное (коле­бательное) движение. Максимальные углы отклонения стержня от вертикали соот­ветствуют наиболь­шим абсолютным значениям функции sin (πt/6). Очевидно, это имеет место при sin (πt/6) = ± 1:

Крайние положения стержня OA на рис. 1.47 пока­заны штриховыми линиями OA1 и ОА2.

Напомним, что за положительное направление считаем вращение по часовой стрелке.

Уравнение изменения угловой скорости стержня OA

Уравнение изменения углового ускорения стержня OA

Направления ω и ε показаны на рис. 1.47. В приве­денном примере направления ω и ε противоположны. Следовательно, стержень OA совершает замедленное вра­щательное движение.

Нормальное и касательное ускорения шарика опреде­ляются по формулам:

В рассматриваемом примере касательное ускорение шари­ка направлено к точке С (рис. 1.47).

Определим момент времени, при котором ап равно нулю. Для этого выражение ап приравняем нулю:

Записанное условие выполняется при

Нормальное ускорение шарика равно нулю, когда стержень OA занимает крайние положения.

Определим момент времени, при котором at равно нулю. Для этого выражение at приравняем нулю:

Это условие выполняется при

Касательное ускорение шарика обращается в ноль в тот момент, когда стержень OA совпадает с линией OC. Вычислим аn и at при t = 1,5 с:

Ускорение шарика при t = 1,5 с

Угол между вектором ускорения шарика и стержнем OA определяется из соотношения

Пример 11. Через 30 с равномерного вращательного движения с частотой n0 = 600 об/мин тело начало равнозамедленное движение и в течение последую­щих 20 с частота вращения тела уменьшилась до n = 450 об/мин.

Определить угловое ускорение тела при равнозамедленном вращательном движении, а также количество оборотов тела за время равномерного и равнозамедленного движения.

Решение

1. Переведем начальную и конечную частоты вращения тела в еди­ницы угловой скорости:

2. За время t1 = 30 с тело, вращаясь равномерно с угловой скоростью ω0 = 20π рад/с, повернулось на угол

3. По формуле угловое ускорение, с которым тело вращалось в те­чение времени t2 = 20 с

4. За время равнозамедленного движения тело повернулось на угол

5. За весь промежуток времени t1 + t2 = 50 с тело повернулось на угол

следовательно, тело сделало

Для определения количества оборотов, сделанных телом, можно было частоту вращения и не переводить в единицы угловой скорости. За время t1 = 30 с = 0,5 мин при равномерном движении тело сделало

За время t2 = 20 с = 1/3 мин при равнозамедленном вращении тело сделало

Контрольные вопросы и задания

1. Какими кинематическими параметрами характеризуется по­ступательное движение и почему?

2. Запишите уравнение равномерного поступательного движе­ния твердого тела.

3. Запишите уравнение равнопеременного поступательного дви­жения твердого тела.

4. Запишите уравнения равномерного и равнопеременного вра­щательного движений твердого тела.

5. Задано уравнение движения тела S = f(t). Как определяют скорость и ускорение?

6. Для заданного закона (уравнения) движения

φ = 6,28 + 12t + 3t 2 выберите соответствующий кинематический график движения (рис. 11.11).

7. Для движения, закон которого задан в вопросе 6, определите угловое ускорение в момент t = 5 с.


источники:

http://polyphis.ru/fiz1_1_scr

http://mydocx.ru/12-105319.html