Все приемы решений систем уравнения

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Основные приёмы решения систем уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Департамент образования, науки и молодежной политики Воронежской области

Государственное бюджетное профессиональное
образовательное учреждение Воронежской области
«Лискинский промышленно-транспортный техникум имени А.К. Лысенко»

(ГБПОУ ВО «ЛПТТ имени А.К. Лысенко»)

«Основные приёмы решения систем уравнений»

Преподаватель Варова О.А.

Решением системы называют числа, при подстановке которых в уравнения системы каждое уравнение становится верным числовым равенством. Решить систему уравнений – значит найти все её решения или установить, что система не имеет решения.

Основная идея решения систем уравнений состоит в постепенном переходе от одной системы к другой более простой, но равносильной заданной. Метод подстановки, метод алгебраического сложения и метод введения новых переменных абсолютно корректны с точки зрения равносильности. Если же в процессе решения системы использовались неравносильные преобразования ( возведение в квадрат обеих частей уравнения, умножение уравнений или преобразования, которые привели к расширению области определения какого-либо уравнения системы), то все найденные решения следует проверить подстановкой в исходную систему.

Рассмотрим теперь конкретные системы алгебраических уравнений и продемонстрируем различные методы их решений. Предварительно отметим, что, строго говоря, невозможно выделить один метод решения достаточно сложной системы, поскольку, как правило , последовательно задействуются различные приёмы. Но методически очень полезно в каждом примере выделить один метод, не заостряя внимания на других.

Основные методы решения систем уравнений.

1. Метод подстановки.

Системы уравнений появляются при решении задач, в которых неизвестной является не одна величина, а несколько. Это величины связаны определёнными зависимостями, которые записываются в виде уравнений.

Один из основных методов решения систем – метод подстановки.

а) Рассмотрим, например, систему двух уравнений с двумя неизвестными

Часто удаётся одно уравнение преобразовать так, чтобы неизвестное явно выражалось как функция другого. Тогда, подставляя его во второе уравнение, получим уравнение с одним неизвестным.

б) Решим систему трёх уравнений с тремя неизвестными методом подстановки:

2. Метод алгебраического сложения.

а) Решим систему Умножим первое уравнение на 2 и складывая полученное уравнение со вторым, приходим к уравнению 22х=33, х=1,5. Подставив в любое уравнение значение х, получим у=-0,5.

б) Решим систему :

Умножая первое уравнение на 5, а второе на 7 и складывая полученные результаты, приходим к уравнению

Заметим, что пара чисел (0;0), являясь решением полученного уравнения, не удовлетворяет исходной системе. Поэтому подстановкой x = ty сводим уравнение к виду Разделив обе части на получим уравнение

Таким образом , исходная система равносильна совокупности систем:

Решая первую систему получим х=4, у=5 и х=-4, у=-5; решение второй – х=3у=х=-3у=

в) Решим систему :

Складывая почленно уравнения данной системы, получаем уравнение которое равносильно следующему (х+у-7)(х+у+7)=0.

Система равносильная исходной, распадается на две системы:

Совокупность этих систем равносильна исходной системе, т.е. каждое решение исходной системы является решением или системы (А), или системы (В) и всякое решение систем (А) и (В) есть решение исходной системы.

Система (А) приводится к виду

Отсюда ясно, что она имеет решение (4;3). Аналогично система (В) имеет решение (-4;-3). Объединив эти решения, находим все решения исходной системы.

г) Решим систему:

Обратим внимание на то, что левые части уравнений содержат одни и те же комбинации неизвестных. Поэтому целесообразно умножить уравнения на подходящие множители с тем, чтобы исключить из системы одно из неизвестных. Из системы исключим сложив второе уравнение с первым, умноженным на -3. В результате получим уравнение которое путём замены xy = t приведём к виду Очевидно, что Таким образом, исходная система распадается на системы:

В первом случае находим Если х=1, то у=2, а если х=-1, то у=-2.

Во втором случае, исключая у, получаем Поэтому вторая из двух последних систем не имеет действительных решений.

3. Метод введения новых переменных.

Полагая преобразуем систему к виду (Б)

Эта система равносильна каждой из следующих систем:

Квадратное уравнение имеет корни Значит система (Б) имеет решения: () и (;, а система (А) имеет решения (2;3) и (3;2).

Рассмотренная система состоит из симметрических уравнений (м етод решения симметричных систем см.ниже).

б) Решим систему :

Воспользуемся методом введения новой переменной: z =

Тогда первое уравнение примет вид z + = 2. Решим его:

Возвращаясь к переменным х,у, получаем уравнение

Преобразуем его: 3х-2у=2х, х=2у.

Итак, первое уравнение данной системы заменим более простым х=2у, получим систему:

для решения которой используем метод подстановки, подставив первое уравнение во второе.

Т.к. в процессе решения системы использовался «ненадёжный» метод – возведение в квадрат обеих частей одного из уравнений, — найденные пары значений надо проверить подстановкой в заданную систему. Проверка показывает, что посторонних корней нет.

в) Решим систему: (А)

Преобразуем первое уравнение системы:

Введём новые неизвестные u = x + y , v = xy . После упрощения получим (Б)

Система (Б) равносильна каждой из следующих систем:

Последняя система имеет два решения:

Поэтому система (А) равносильна совокупности систем: и

Система (В) имеет решения (2;1) и (1;2); система (Г) решений не имеет.

г) Решим систему:

«Переделаем» данное разложение уравнений, записав систему в ином виде:

Пусть и учитывая, что запишем исходную систему иначе:

Таким образом, исходная система равносильная системе

Распадается на две линейные системы:

4. Метод использования графика.

Каждое из уравнений системы можно рассматривать как уравнение кривой. Поэтому решения системы двух уравнений с двумя неизвестными можно интерпретировать как координаты точек пересечения двух кривых.

5. Метод решения симметричных систем .

Система уравнений называется симметричной, если она составлена из выражений, симметричных относительно неизвестных:

Возьмём две буквы .

Два выражения – сумма u = и произведение v = являются основными симметричными выражениями относительно

Другие симметричные выражения можно так же выразить через u и v :

Теорема Виета выражает основные симметричные выражения относительно корней квадратного уравнения

Любое выражение, симметричное относительно корней квадратного уравнения, можно выразить через его коэффициенты, не находя самих корней.

Можно сформулировать теорему, обратную теореме Виета: если числа удовлетворяют системе уравнений
то они являются корнями уравнения.

Симметричную систему можно упростить заменой симметричных выражений выражениями через сумму и произведений неизвестных.

а)Например, систему заменой можно привести к системе

Зная по теореме, обратной к теореме Виета, находим х и у из квадратного уравнения

Решение некоторых уравнений полезно сводить к решению симметричных систем.

б)Например, при решении линейной системы часто можно воспользоваться её симметрией:

Сложим все уравнения и получим 10

Теперь вычтем это уравнение из первого, из второго – предварительно умножив это уравнение на 2 и из третьего – предварительно умножив это уравнение на 3, получим:

Разность первой пары уравнений даёт 4

второго и третьего уравнений 4

Далее подстановкой в удобное уравнение находим

6.Метод обращения к одному из следствий.

а)Решить систему уравнений:

На первый взгляд кажется, что надо избавиться от дробей, приводя их к общему знаменателю. Однако этот приём не упрощает систему и не даёт возможность исключить одно из неизвестных. К успеху приводит почленное перемножение уравнений системы:

Введём новую переменную z = xy . Получим: ( z -6)( z +24)= т.е. ху=8.

Это уравнение рассмотрим совместно с первым:

Теперь воспользуемся методом подстановки . Выразим из второго уравнения через и подставим полученное выражение вместо в первое уравнение:

После упрощений второе уравнение примет вид Его корни Но :

Итак, получили 2 решения: (4;2) и (-4;-2). Но поскольку в процессе решения системы применялся «ненадёжный» метод , найденные пары значений надо проверить подстановкой в заданную систему. Проверка показывает, что пары чисел (4;2) и (-4;-2) являются решениями исходной системы.

На первый взгляд кажется, что надо избавиться от дробей, приводя их к общему знаменателю. Однако этот приём не упрощает систему и не даёт возможность исключить одно из неизвестных. К успеху приводит почленное перемножение уравнений системы. В результате этой операции получаем уравнение которое вместе с первым уравнением образует систему, являющуюся следствием данной. Исключив из полученной системы, приходим к уравнению Его корни Соответствующие значения найдём из уравнения. Проверка показывает, что пары чисел (2;3) и (-2;-3) являются решениями исходной системы.

На первый взгляд кажется, что надо попытаться разложить левую часть уравнений на множители, применив метод группировки. Однако это очень сложно. К успеху приводит приём, состоящий в том, что одно из уравнений системы рассматривается как квадратное относительно х или у.

Представим первое уравнение системы как квадратное относительно х:

и запишем формулу для вычисления корней

Представим второе уравнение системы как квадратное относительно х:

и запишем формулу для вычисления корней

Следовательно, исходная система равносильна совокупности систем:

Первая из систем не имеет решения, другие системы имеют соответственно решения: (-2;0), (-3;3), (-4;2).

Методы решения иррациональных систем .

Системы иррациональных уравнений обычно сводят к системам рациональных уравнений с помощью операции возведения обеих частей уравнения в натуральную степень n . При этом следует иметь в виду, что если n — чётное число, то в результате этой операции получается уравнение, являющееся следствием исходного, т.е. среди его корней могут оказаться посторонние, поэтому необходимо сделать проверку. Но если n — нечётное число, то полученное уравнение равносильно исходному.

Но не следует торопиться «освобождаться от корней», применяя упомянутый метод. Он может оказаться неэффективен в начале решения, т.к. приводит к громоздким выражениям. Нужно присмотреться к системе и попытаться упростить её. Например: 1. Решим систему:

Сравнивая левые части уравнений системы, замечаем, что они представляют собой сопряжённые выражения. В таком случае следует воспользоваться приёмом почленного умножения уравнений. Осложнений не будет, т.к. После почленного умножения получаем у=16. Подставляя это значение в первое уравнение, получим . Возведя в квадрат обе части уравнения, получаем Снова возводим в квадрат обе части уравнения, приведя его к виду: , а у=16, то . Значит х=20.

В преобразованиях было дважды применено возведение обеих частей уравнения в чётную степень, т.е. дважды могли получить посторонние корни. Поэтому значения х=20 и у=16 следует проверить подстановкой в исходную систему.

2. Решить систему уравнений:

Воспользуемся методом введения новой переменной: z =

Тогда первое уравнение системы примет вид

Решим это уравнение:

Возвращаясь к переменной х, у, получаем уравнение

Решим это уравнение: 3х-2у=2х, х=2у, а это первое уравнение системы. Получили более простую систему уравнений:

Для решения которой используем метод подстановки, подставив первое уравнение во второе: ,

Т.к. в процессе решения системы использовался «ненадёжный» (с точки зрения равносильности ) метод – возведение в квадрат обеих частей одного из уравнений, — найденные значения надо проверить подстановкой в заданную систему. Проверка показывает, что посторонних корней нет.

Пять решений одной системы уравнений.

Математики считают, что полезнее решить одну задачу несколькими способами, чем несколько задач – одним. При поиске новых методов решения задачи иногда обнаруживается связь между разными разделами математики. Приведу один пример.

Решить систему уравнений:

1 способ. Выразим в 1 уравнении через , подставив полученное выражение во 2 уравнение и преобразовав его, получим:

Решим это уравнение как квадратное относительно

D =)= D при всех значениях

Следовательно уравнение (3) имеет решение только при D ,т.е. при

Тогда =1. Подставляя найденные значения, находим

2 способ. Возводим первое уравнение в квадрат и вычтем второе, получим:

или xy + xz + yz =3=

— 2 xy — 2 xz — 2 yz =0, или

3 способ. Рассмотрим геометрическую интерпретацию. Уравнение (1) описывает плоскость, пересекающую координатные оси в точках А(3;0;0), В(0;3;0) и С(0;0;3), а уравнение (2) – сферу с центром в начале координат и радиусом равным

Для выяснения того, что представляет собой пересечение сферы с плоскостью, нужно сравнить радиус сферы с расстоянием от её центра до плоскости. Расстояние от точки О до плоскости АВС можно найти, вычислив высоту О D тетраэдра ОАВС, записав двумя способами объём тетраэдра

Треугольник АВС правильный, т.к. его стороны являются гипотенузами равных прямоугольных треугольников и равны 3 Тогда

Подставляя найденные значения в соотношение (4), получим, что т.е. радиус сферы в точности равен расстоянию от её центра до плоскости. Это означает, что плоскость касается сферы и исходная система имеет единственное решение, которое легко угадывается:

4 способ. Докажем, что система не имеет других решений. Введём другие переменные: a = x +1, b = y +1, c = z +1. Тогда уравнение примет вид a + b + c =0. (5) Преобразуем второе уравнение:

С учётом соотношения (5) получим, что система имеет единственное нулевое решение, что влечёт за собой единственное решение в старых переменных.

5 способ. Рассмотрим случайную величину принимающую с равной вероятностью значения Тогда левые части уравнений исходной системы представляют собой соответственно 3 М и 3М

М Следовательно М =М и дисперсия D =М- (М=0, т.е. = const и, значит,

Итак, одну и ту же задачу мы решили с помощью алгебры, геометрии и теории вероятностей!

Математика: учебник для учреждений нач. и сред. проф. образования / М.И. Башмаков. -4-е изд., стер. — М.: Издательский центр «Академия», 2012. – 256с.

Алгебра и начала математического анализа.10 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений (профильный уровень)/ А.Г.Мордкович, П.В.Семёнов.- 7-е изд., стер. – М.: Мнемозина, 2010. – 424 с.: ил.

Алгебра и начала математического анализа.11 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений (профильный уровень)/ А.Г.Мордкович, П.В.Семёнов.- 4-е изд., стер. – М.: Мнемозина, 2010. – 287 с.: ил.

Основные методы решения систем уравнений

Основные методы решения систем уравнений:

1. Метод подстановки: из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.

Задача. Решить систему уравнений:

Решение. Из первого уравнения системы выражаем у через х и подставляем во второе уравнение системы. Получим систему равносильную исходной.

После приведения подобных членов система примет вид:

Из второго уравнения находим: . Подставив это значение в уравнение у = 2 – 2х, получим у = 3. Следовательно, решением данной системы является пара чисел .

2. Метод алгебраического сложения: путем сложения двух уравнений получить уравнение с одной переменной.

Задача. Решить систему уравнение:

Решение. Умножив обе части второго уравнения на 2, получим систему равносильную исходной. Сложив два уравнения этой системы, придем к системе

После приведения подобных членов данная система примет вид: Из второго уравнения находим . Подставив это значение в уравнение 3х + 4у = 5, получим , откуда . Следовательно, решением данной системы является пара чисел .

3. Метод введения новых переменных: ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.

Задача. Решить систему уравнений:

Решение. Запишем данную систему иначе:

Пусть х + у = u, ху = v. Тогда получим систему

Решим ее методом подстановки. Из первого уравнения системы выразим u через v и подставим во второе уравнение системы. Получим систему т.е.

Из второго уравнение системы находим v1 = 2, v2 = 3.

Подставив эти значения в уравнение u = 5 – v, получим u1 = 3,
u2 = 2. Тогда имеем две системы

Решая первую систему, получим две пары чисел (1; 2), (2; 1). Вторая система решений не имеет.

Упражнения для самостоятельной работы

1. Решить системы уравнений методом подстановки:

а) б) в)

2. Решить систему уравнений методом сложения:

а) б) в)

3. Решить систему уравнений методом введения новых переменных:

а) б) в)


источники:

http://infourok.ru/osnovnie-priyomi-resheniya-sistem-uravneniy-2085265.html

http://kto.guru/matematika/867-osnovnye-metody-reshenija-sistem-uravnenij.html