Все решения уравнения это множество

Системы уравнений: определение, виды, примеры решения

Статья знакомит с таким понятием, как определение системы уравнений и ее решением. Будут рассмотрены часто встречающиеся случаи решений систем. Приведенные примеры помогут подробно пояснить решение.

Определение системы уравнений

Чтобы перейти к определению системы уравнений, необходимо обратить внимание на два момента: вид записи и ее смысл. Чтобы понять это, нужно подробно остановиться на каждом из видов, тогда сможем прийти к определению систем уравнений.

Например, возьмем два уравнения 2 · x + y = − 3 и x = 5 , после чего объединим фигурной скобкой такого плана:

2 · x + y = — 3 , x = 5 .

Уравнения, объединенные фигурной скобкой, считаются записями систем уравнений. Они задают множества решений уравнений данной системы. Каждое решение должно являться решением всех заданных уравнений.

Другими словами это означает, что любые решения первого уравнения будут решениями всех уравнений, объединенных системой.

Системы уравнений – это некоторое количество уравнений, объединенных фигурной скобкой, имеющих множество решений уравнений, которые одновременно являются решениями для всей системы.

Основные виды систем уравнений

Видов уравнений достаточно много, как систем уравнений. Для того, чтобы было удобно решать и изучать их, подразделяют на группы по определенным характеристикам. Это поможет в рассмотрении систем уравнений отдельных видов.

Для начала уравнения классифицируются по количеству уравнений. Если уравнение одно, то оно является обычным уравнением, если их более, тогда имеем дело с системой, состоящей из двух или более уравнений.

Другая классификация затрагивает число переменных. Когда количество переменных 1 , говорят, что имеем дело с системой уравнений с одной неизвестной, когда 2 – с двумя переменными. Рассмотрим пример

x + y = 5 , 2 · x — 3 · y = 1

Очевидно, что система уравнений включает в себя две переменные х и у .

При записи таких уравнений считается число всех переменных, имеющихся в записи. Их наличие в каждом уравнении необязательно. Хотя бы одно уравнение должно иметь одну переменную. Рассмотрим пример системы уравнений

2 x = 11 , x — 3 · z 2 = 0 , 2 7 · x + y — z = — 3

Данная система имеет 3 переменные х , у , z . Первое уравнение имеет явный х и неявные у и z . Неявные переменные – это переменные, имеющие 0 в коэффициенте. Второе уравнение имеет х и z , а у неявная переменная. Иначе это можно записать таким образом

2 x + 0 · y + 0 · z = 11

А другое уравнение x + 0 · y − 3 · z = 0 .

Третья классификация уравнений – это вид. В школе проходят простые уравнения и системы уравнений, начиная с систем двух линейных уравнений с двумя переменными. Имеется в виду, что система включает в себя 2 линейных уравнения. Для примера рассмотрим

2 · x — y = 1 , x + 2 · y = — 1 и — 3 · x + y = 0 . 5 , x + 2 2 3 · y = 0

Это основные простейшие линейные уравнения. Далее можно столкнуться с системами, содержащими 3 и более неизвестных.

В 9 классе решают уравнения с двумя переменными и нелинейные. В целых уравнениях повышается степень для увеличения сложности. Такие системы называют системами нелинейных уравнений с определенным количеством уравнений и неизвестных. Рассмотрим примеры таких систем

x 2 — 4 · x · y = 1 , x — y = 2 и x = y 3 x · y = — 5

Обе системы с двумя переменными и обе являются нелинейными.

При решении можно встретить дробно-рациональные уравнения. Например

x + y = 3 , 1 x + 1 y = 2 5

Могут называть просто системой уравнений без уточнения, каких именно. Редко уточняют сам вид системы.

Старшие классы переходят к изучению иррациональных, тригонометрических и показательных уравнений. Например,

x + y — x · y = 5 , 2 · x · y = 3 , x + y = 5 · π 2 , sin x + cos 2 y = — 1 , y — log 3 x = 1 , x y = 3 12 .

Высшие учебные заведения изучают и исследуют решения систем линейных алгебраических уравнений (СЛАУ). Левая часть таких уравнений содержит многочлены с первой степенью, а правая – некоторые числа. Отличие от школьных в том, что количество переменных и количество уравнений может быть произвольным, чаще всего несовпадающим.

Решение систем уравнений

Решение системы уравнений с двумя переменными – это пара переменных, которая при подстановке обращает каждое уравнение в верное числовое неравенство, то есть является решением для каждого уравнения данной системы.

К примеру, пара значений х = 5 и у = 2 являются решением системы уравнений x + y = 7 , x — y = 3 . Потому как при подстановке уравнения обращаются в верные числовые неравенства 5 + 2 = 7 и 5 − 2 = 3 . Если подставить пару х = 3 и у = 0 , тогда система не будет решена, так как подстановка не даст верное уравнение, а именно, мы получим 3 + 0 = 7 .

Сформулируем определение для систем, содержащих одну и более переменных.

Решение системы уравнений с одной переменной – это значение переменной, которая является корнем уравнений системы, значит, все уравнения будут обращены в верные числовые равенства.

Рассмотрим на примере системы уравнений с одной переменной t

t 2 = 4 , 5 · ( t + 2 ) = 0

Число — 2 – решение уравнения, так как ( − 2 ) · 2 = 4 , и 5 · ( − 2 + 2 ) = 0 являются верными числовыми равенствами. При t = 1 система не решена, так как при подстановке получим два неверных равенства 12 = 4 и 5 · ( 1 + 2 ) = 0 .

Решение системы с тремя и более переменными называют тройку, четверку и далее значений соответственно, которые обращают все уравнения системы в верные равенства.

Если имеем значения переменных х = 1 , у = 2 , z = 0 , то подставив их в систему уравнений 2 · x = 2 , 5 · y = 10 , x + y + z = 3 , получим 2 · 1 = 2 , 5 · 2 = 10 и 1 + 2 + 0 = 3 . Значит, эти числовые неравенства верные. А значения ( 1 , 0 , 5 ) не будут решением, так как, подставив значения, второе из них будет неверное, как и третье: 5 · 0 = 10 , 1 + 0 + 5 = 3 .

Системы уравнений могут не иметь решений вовсе или иметь бесконечное множество. В этом можно убедиться при углубленном изучении данной тематики. Можно прийти к выводу, что системы уравнений – это пересечение множеств решений всех ее уравнений. Раскроем несколько определений:

Несовместной называют систему уравнений, когда она не имеет решений, в противном случае ее называют совместной.

Неопределенной называют систему, когда она имеет бесконечное множество решений, а определенной при конечном числе решений либо при их отсутствии.

Такие термины редко применяются в школе, так как рассчитаны для программ высших учебных заведений. Знакомство с равносильными системами углубит имеющиеся знания по решению систем уравнений.

Операции над множествами

Пересечение множеств

Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = <Том,
Фред,
Макс,
Джорж >
Друзья Майкла = <Лео,
Том,
Фред,
Эван >

Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.

Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.

Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда :

Общие друзья Джона и Майкла=

В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.

Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.

В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.

Обозначим множество друзей Джона через букву A , множество друзей Майкла — через букву B , а множество общих друзей Джона и Майкла обозначим через букву C :

Тогда пересечением множеств A и B будет множество C и записываться следующим образом:

Символ означает пересечение.

Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения ∩ читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:

«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».

«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».

Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A , а множество друзей Майкла через букву B

В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом ∅

Пример 2. Рассмотрим два множества: множество A , состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B

Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B , состоящее из чисел 1, 4, 5, 7

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B.

Пример 4. Найти пересечение следующих множеств:

Пересечением множеств A , B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A , B и C . Этими элементами являются числа 3 и 9.

Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения запишем, что пересечением множеств A, B и C является множество D

Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.

К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5 . Пересечением в данном случае является множество, состоящее из элементов 3 и 5 . Чтобы записать пересечение, можно воспользоваться прямым перечислением:

Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.

Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:

Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.

Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6) :

Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.

Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8] . Найти их пересечение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8] :

Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6] , так и второму [4; 8] .

Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]

Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6] , на нижней — промежуток [4; 8]

Видно, что числа, принадлежащие промежутку [4; 6] , принадлежат как промежутку [2; 6] , так и промежутку [4; 8] . Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6] . В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле, что очень удобно.

Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7] :

−2, −1, 0, 1, 2, 3 ∈ [−2; 3]

Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:

Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:

Пример 7. Дано множество из одного элемента < 2 >. Найти его пересечение с промежутком (−3; 4)

Множество, состоящее из одного элемента < 2 >, на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:

Пересечением множества < 2 >и числового промежутка (−3; 4) будет множество, состоящее из одного элемента < 2 >, поскольку элемент 2 принадлежит как множеству < 2 >, так и числовому промежутку (−3; 4)

На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.

По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.

Например, чтобы решить систему неравенств , мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.

В данном примере решением первого неравенства x ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)

Решением второго неравенства x ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]

А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]

Если мы изобразим множество решений системы на координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6] , который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]

Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства

Пример 2. Решить неравенство

Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.

Решением первого неравенства является числовой промежуток (−∞; −1) .

Решением второго неравенства является числовой промежуток (−∞; −5) .

Решением третьего неравенства является числовой промежуток (−∞; 4) .

Решением системы будет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4) . В данном случае этим пересечением является промежуток (−∞; −5) .

На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5) , одновременно принадлежат всем исходным промежуткам.

Запишем ответ к системе с помощью числового промежутка:

Пример 3. Решить неравенство

Решением первого неравенства y > 7 является числовой промежуток (7; +∞) .

Решением второго неравенства y является числовой промежуток (−∞; 4) .

Решением системы будет пересечение числовых промежутков (7; +∞) и (−∞; 4) .

В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:

Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:

Объединение множеств

Объединением двух (или нескольких) исходных множеств называют множество, которое состоит из элементов, принадлежащих хотя бы одному из исходных множеств.

На практике объединение множеств состоит из всех элементов, принадлежащих исходным множествам. Поэтому и говорят, что элементы такого множества принадлежат хотя бы одному из исходных множеств.

Рассмотрим множество A с элементами 1, 2, 3 и множество B с элементами 4, 5, 6.

Зададим новое множество C и добавим в него все элементы множества A и все элементы множества B

В данном случае объединением множеств A и B является множество C и обозначается следующим образом:

Символ ∪ означает объединение и заменяет собой союз ИЛИ. Тогда выражение AB = C можно прочитать так:

Элементы, принадлежащие множеству A ИЛИ множеству B, есть элементы, принадлежащие множеству C.

В определении объединения сказано, что элементы такого множества принадлежат хотя бы одному из исходных множеств. Данную фразу можно понимать в прямом смысле.

Вернёмся к созданному нами множеству C , куда входят все элементы множеств A и B . Возьмём для примера из этого множества элемент 5. Что можно про него сказать?

Если 5 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 5 принадлежит хотя бы одному из множеств A и B . Так оно и есть:

Возьмем ещё один элемент из множества С , например, элемент 2. Что можно про него сказать?

Если 2 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 2 принадлежит хотя бы одному из множеств A и B . Так оно и есть:

Если мы захотим объединить два или более множества и вдруг обнаружим, что один или несколько элементов принадлежат каждому из этих множеств, то в объединение повторяющиеся элементы будут входить только один раз.

Например, рассмотрим множество A с элементами 1, 2, 3, 4 и множество B с элементами 2, 4, 5, 6.

Видим, что элементы 2 и 4 одновременно принадлежат и множеству A , и множеству B . Если мы захотим объединить множества A и B , то новое множество C будет содержать элементы 2 и 4 только один раз. Выглядеть это будет так:

Чтобы при объединении не допустить ошибок, обычно поступают так: сначала в новое множество добавляют все элементы первого множества, затем добавляют элементы второго множества, которые не принадлежат первому множеству. Попробуем сделать такое объединение с множествами A и B .

Итак, у нас имеются следующие исходные множества:

Зададим новое множество С и добавим в него все элементы множества A

Теперь добавим элементы из множества B , которые не принадлежат множеству A . Множеству A не принадлежат элементы 5 и 6 . Их и добавим во множество C

Пример 2. Друзьями Джона являются Том, Фред, Макс и Джордж. А друзьями Майкла являются Лео, Том, Фред и Эван. Найти объединение множеств друзей Джона и Майкла.

Для начала зададим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = <Том,
Фред,
Макс,
Джорж >
Друзья Майкла = <Лео,
Том,
Фред,
Эван >

Зададим новое множество с названием «Все друзья Джона и Майкла» и добавим в него всех друзей Джона и Майкла.

Заметим, что Том и Фред одновременно являются друзьями Джона и Майкла, поэтому мы добавим их в новое множество только один раз, поскольку сразу двух Томов и двух Фредов не бывает.

Все друзья Джона и Майкла=

В данном случае множество всех друзей Джона и Майкла является объединением множеств друзей Джона и Майкла.

Друзья Джона ∪ Друзья Майкла = Все друзья Джона и Майкла

Пример 3. Даны два числовых промежутка: [−7; 0] и [−3; 5] . Найти их объединение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие этим промежуткам:

−7, −6, −5, −4, −3,−2, −1 , 0 ∈ [−7; 0]

−3,−2, −1 , 0, 1, 2, 3, 4, 5 ∈ [−3; 5]

Объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5] , который содержит все числа промежутка [−7; 0] и [−3; 5] без повторов некоторых из чисел

−7, −6, −5, −4, −3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−7; 5]

Обратите внимание, что числа −3,−2, −1 принадлежали и первому промежутку и второму. Но поскольку в объединение допускается включать такие элементы только один раз, мы включили их единоразово.

Значит объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5]

Изобразим на координатной прямой промежутки [−7; 0] и [−3; 5] . На верхней области отметим числовой промежуток [−7; 0] , на нижней — промежуток [−3; 5]

Ранее мы выяснили, что промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] . Здесь полезно вспомнить про определение объединения множеств, которое было приведено в самом начале. Объединение трактуется, как множество, состоящее из всех элементов, принадлежащих хотя бы одному из исходных множеств.

Действительно, если взять любое число из промежутка [−7; 5] , то окажется, что оно принадлежит хотя бы одному из промежутков: либо промежутку [−7; 0] либо промежутку [−3; 5] .

Возьмём из промежутка [−7; 5] любое число, например число 2 . Поскольку промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] , то число 2 будет принадлежать хотя бы одному из этих промежутков. В данном случае число 2 принадлежит промежутку [−3; 5]

Возьмём ещё какое-нибудь число. Например, число −4 . Это число будет принадлежать хотя бы одному из промежутков: [−7; 0] или [−3; 5] . В данном случае оно принадлежит промежутку [−7; 0]

Возьмём ещё какое-нибудь число. Например, число −2 . Оно принадлежит как промежутку [−7; 0] , так и промежутку [−3; 5] . Но на координатной прямой оно указывается только один раз, поскольку в одной точке сразу два числа −2 не бывает.

Не каждое объединение числовых промежутков является числовым промежутком. Например, попробуем найти объединение числовых промежутков [−2 ; −1] и [4 ; 7].

Идея остаётся та же самая — объединением числовых промежутков [−2 ;−1] и [4 ; 7] будет множество, состоящее из элементов, принадлежащих хотя бы одному из промежутков: [−2; −1] или [4; 7] . Но это множество не будет являться числовым промежутком. Для наглядности перечислим все целые числа, принадлежащие этому объединению:

Получили множество < −2, −1, 4, 5, 6, 7 >. Это множество не является числовым промежутком по причине того, что числа, располагающиеся между −1 и 4 , не вошли в полученное множество

Числовой промежуток должен содержать все числа от левой границы до правой. Если одно из чисел отсутствует, то числовой промежуток теряет смысл. Допустим, имеется линейка длиной 15 см

Эта линейка является числовым промежутком [0; 15], поскольку содержит все числа в промежутке от 0 до 15 включительно. Теперь представим, что на линейке после числа 9 сразу следует число 12.

Эта линейка не является линейкой в 15 см, и её нежелательно использовать для измерения. Также, её нельзя назвать числовым промежутком [0; 15] , поскольку она не содержит все числа, которые должна была содержать.

Решение неравенств, содержащих знак ≠

Некоторые неравенства содержат знак (не равно). Например, 2x ≠ 8 . Чтобы решить такое неравенство, нужно найти множество значений переменной x , при которых левая часть не равна правой части.

Решим неравенство 2x ≠ 8 . Разделим обе части данного неравенства на 2, тогда получим:

Получили равносильное неравенство x ≠ 4 . Решением этого неравенства является множество всех чисел, не равных 4. То есть если мы подставим в неравенство x ≠ 4 любое число, которое не равно 4, то получим верное неравенство.

Подставим, например, число 5

5 ≠ 4 — верное неравенство, поскольку 5 не равно 4

7 ≠ 4 — верное неравенство, поскольку 7 не равно 4

И поскольку неравенство x ≠ 4 равносильно исходному неравенству 2x ≠ 8 , то решения неравенства x ≠ 4 будут подходить и к неравенству 2x ≠ 8 . Подставим те же тестовые значения 5 и 7 в неравенство 2x ≠ 8 .

Изобразим множество решений неравенства x ≠ 4 на координатной прямой. Для этого выколем точку 4 на координатной прямой, а всю оставшуюся область с обеих сторон выделим штрихами:

Теперь запишем ответ в виде числового промежутка. Для этого воспользуемся объединением множеств. Любое число, являющееся решением неравенства 2x ≠ 8 будет принадлежать либо промежутку (−∞; 4) либо промежутку (4; +∞). Так и записываем, что значения переменной x принадлежат (−∞; 4) или (4; +∞) . Напомним, что для слова «или» используется символ ∪

В этом выражении говорится, что значения, принимаемые переменной x , принадлежат промежутку (−∞; 4) или промежутку (4; +∞).

Неравенства, содержащие знак , также можно решать, как обычные уравнения. Для этого знак заменяют на знак = . Тогда получится обычное уравнение. В конце решения найденное значение переменной x нужно исключить из множества решений.

Решим предыдущее неравенство 2x ≠ 8 , как обычное уравнение. Заменим знак ≠ на знак равенства = , получим уравнение 2x = 8 . Разделим обе части данного уравнения на 2 , получим x = 4 .

Видим, что при x , равном 4, уравнение обращается в верное числовое равенство. При других значениях равенства соблюдаться не будет. Эти другие значения нас и интересуют. А для этого достаточно исключить найденную четвёрку из множества решений.

Пример 2. Решить неравенство 3x − 5 ≠ 1 − 2x

Перенесем −2x из правой части в левую часть, изменив знак, а −5 из левой части перенесём в правую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях:

Разделим обе части получившегося неравенства на 5

Решением неравенства x ≠ 1,2 является множество всех чисел, не равных 1,2 .

Изобразим множество решений неравенства x ≠ 1,2 на координатной прямой и запишем ответ в виде числового промежутка:

В этом выражении говорится, что значения, принимаемые переменной x принадлежат промежутку (−∞; 1,2) или промежутку (1,2; +∞)

Решение совокупностей неравенств

Рассмотрим ещё один вид неравенств, который называется совокупностью неравенств. Такой тип неравенств, возможно, вы будете решать редко, но для общего развития полезно изучить и их.

Совокупность неравенств очень похожа на систему неравенств. Различие в том, что в системе неравенств нужно найти множество решений, удовлетворяющих каждому неравенству, образующему эту систему.

А в случае с совокупностью неравенств, нужно найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность.

Совокупность неравенств обозначается квадратной скобкой. Например, следующая запись из двух неравенств является совокупностью:

Решим данную совокупность. Сначала нужно решить каждое неравенство по отдельности.

Решением первого неравенства x ≥ 3 является числовой промежуток [3; +∞) . Решением второго неравенства x ≤ 6 является числовой промежуток (−∞; 6] .

Множество значений x , при которых верно хотя бы одно из неравенств, будет принадлежать промежутку [3; +∞) или промежутку (−∞; 6] . Так и записываем:

В этом выражении говорится, что переменная x , входящая в
совокупность принимает все значения, принадлежащие промежутку [3; +∞) или промежутку (−∞; 6] . А это то, что нам нужно. Ведь решить совокупность означает найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность. А любое число из промежутка [3; +∞) или промежутка (−∞; 6] будет удовлетворять хотя бы одному неравенству.

Например, число 9 из промежутка [3; +∞) удовлетворяет первому неравенству x ≥ 3. А число −7 из промежутка (−∞; 6] удовлетворяет второму неравенству x ≤ 6.

Посмотрите внимательно на выражение x ∈ [3; +∞) ∪ (−∞; 6], а именно на его правую часть. Ведь выражение [3; +∞) ∪ (−∞; 6] представляет собой объединение числовых промежутков [3; +∞) и (−∞; 6] . Точнее, объединение множеств решений первого и второго неравенства.

Стало быть, решением совокупности неравенств является объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности будет объединение числовых промежутков [3; +∞) и (−∞; 6]

Объединением числовых промежутков [3; +∞) и (−∞; 6] является промежуток (−∞; +∞) . Точнее, объединением числовых промежутков [3; +∞) и (−∞; 6] является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

Ответ можно оставить таким, каким мы его записали ранее:

либо заменить на более короткий:

Возьмём любое число из полученного объединения, и проверим удовлетворяет ли оно хотя бы одному неравенству.

Возьмем для примера число 8. Оно удовлетворяет первому неравенству x ≥ 3.

Возьмем еще какое-нибудь число, например, число 1. Оно удовлетворяет второму неравенству x ≤ 6

Возьмем еще какое-нибудь число, например, число 5 . Оно удовлетворяет и первому неравенству x ≥ 3 и второму x ≤ 6

Пример 2. Решить совокупность неравенств

Чтобы решить эту совокупность, нужно найти множество решений, которые удовлетворяют хотя бы одному неравенству, образующему эту совокупность.

Для начала найдём множество решений первого неравенства x . Этим множеством является числовой промежуток (−∞; −0,25) .

Множеством решений второго неравенства x ≥ −7 является числовой промежуток [−7; +∞).

Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −0,25) и [−7; +∞)

Объединением числовых промежутков (−∞; −0,25) и [−7; +∞) является является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

Ответ можно оставить таким, каким мы его записали ранее:

либо заменить на более короткий:

Пример 3. Решить совокупность неравенств

Решим каждое неравенство по отдельности:

Множеством решений первого неравенства x является числовой промежуток (−∞; −3) .

Множеством решений второго неравенства x ≤ 0 является числовой промежуток (−∞; 0] .

Решением совокупности неравенств будет объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности будет объединение числовых промежутков (−∞; −3) и (−∞; 0]

Объединением числовых промежутков (−∞; −3) и (−∞; 0] является числовой промежуток (−∞; 0]

Ответ можно оставить таким, каким мы его записали ранее:

Уравнение — определение и вычисление с примерами решения

Содержание:

Уравнения

Уравнения-следствия и равносильные преобразования уравнений

1. Понятие уравнения и его корней

Определение:

Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной

Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны

Пример:

— линейное уравнение;

— квадратное уравнение;

— иррациональное уравнение (содержит переменную под знаком корня)

Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство.

Решить уравнение — значит найти все его корни или доказать, что их нет

— корень уравнения , так как при получаем верное равенство: , то есть

2. Область допустимых значений (ОДЗ)

Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций и , стоящих в левой и правой частях уравнения

Для уравнения ОДЗ: , то есть , так как область определения функции определяется условием: , а область определения функции — множество всех действительных чисел

3. Уравнения-следствия

Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения.

Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.

При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения.

Пример:

Решение:

► Возведем обе части уравнения в квадрат:

Проверка, — корень (см. выше); — посторонний корень (при получаем неверное равенство ).

4. Равносильные уравнения

Определение:

Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни.

То есть каждый корень первого уравнения является корнем второго уравнения и, наоборот, каждый корень второго уравнения является корнем первого. (Схема решения уравнений с помощью равносильных преобразований приведена в пункте 5 этой таблицы)

Простейшие теоремы

  1. Если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве)
  2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное заданному (на ОДЗ заданного уравнения)

5. Схема поиска плана решения уравнений

— исходное уравнение;

— уравнение, полученное в результате преобразования исходного;

— символические изображения направления выполненных преобразований

Применение свойств функций к решению уравнений рассмотрено в пункте 3.2.

Объяснение и обоснование:

Понятие уравнения и его корней

Уравнение в математике чаще всего понимают как аналитическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной записывают так:

Часто уравнения определяют короче — как равенство с переменной.

Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.

Например, уравнение имеет единственный корень ,

а уравнение не имеет корней, поскольку значение не может быть отрицательным числом.

Область допустимых значений (ОДЗ) уравнения

Если задано уравнение , то общая область определения для функций и называется областью допустимых значений этого уравнения. (Иногда используются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения областью допустимых значений являются все действительные числа. Это можно записать, например, так: , поскольку функции и имеют области определения .

Понятно, что каждый корень данного уравнения принадлежит как области определения функции , так и области определения функции (иначе мы не сможем получить верное числовое равенство). Поэтому каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении функция определена при всех действительных значениях , а функция только при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Следовательно, ОДЗ этого уравнения задается системой из которой получаем систему не имеющую решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.

Заметим, что нахождение ОДЗ данного уравнения может быть полезным для его решения, но не всегда является обязательным элементом решения уравнения.

Методы решения уравнений

Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения уравнений в курсе математики 5-6 классов использовались зависимости между компонентами и результатами действий и свойства числовых равенств; в курсе алгебры 7-9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод.

Графический метод решения уравнений не дает высокой точности нахождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и начал анализа под требованием «решить уравнение» понимается требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользоваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически).

В основном при решении уравнений разных видов нам придется применять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате получаем простейшее уравнение, которое равносильно заданному и корни которого легко находятся. Эти корни и только они являются корнями данного уравнения.

Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением-следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения находятся среди корней последнего уравнения. Поэтому, чтобы найти корни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному).

В следующем пункте будет также показано применение свойств функций к решению уравнений определенного вида.

Уравнения-следствия

Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны следить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-следствия:

в том случае, когда каждый корень первого уравнения является корнем второго, второе уравнение называется следствием первого.

Это определение позволяет обосновать такой ориентир: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосновать), что каждое следующее уравнение мы можем получить как верное числовое равенство.

Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравнения, а это и означает, что второе уравнение является следствием первого.

Применим приведенный ориентир к уравнению (пока что не используя известное условие равенства дроби нулю).

Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение-следствие . Но тогда верно, что . Последнее уравнение имеет два корня: и . Подставляя их в заданное уравнение, видим, что только корень удовлетворяет исходному уравнению. Почему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторонних корней рассмотрены в таблице 9.) Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один ориентир: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 8. В пункте 3 этой таблицы приведено решение уравнения

(1)

Для решения этого уравнения с помощью уравнений-следствий достаточно данное уравнение рассмотреть как верное числовое равенство и учесть, что в случае когда два числа равны, то и их квадраты также будут равны:

(2)

То есть мы гарантируем, что если равенство (1) верно, то и равенство (2) также будет верным, а это и означает (как было показано выше), что уравнение (2) является следствием уравнения (1). Если мы хотя бы один раз использовали уравнения-следствия (а не равносильные преобразования), то можем получить посторонние корни, и тогда в решение обязательно входит проверка полученных корней подстановкой их в заданное уравнение.

Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком , но его использование для записи решения не является обязательным. Вместе с тем, если этот значок записан, то это свидетельствует о том, что мы воспользовались уравнениями-следствиями, и поэтому обязательно в запись решения необходимо включить проверку полученных корней.

Равносильные уравнения

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом ).

В курсе алгебры и начал анализа мы будем рассматривать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни, то есть каждый корень первого уравнения является корнем второго и, наоборот, каждый корень второго уравнения является корнем первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения и — равносильные, поскольку оба имеют одинаковый корень и других корней не имеют. Таким образом, каждое из них имеет те же решения, что и второе. При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения:

(3)

(4)

то, как было показано выше, уравнение (3) имеет единственный корень , а уравнение (4) — два корня: и . Таким образом, на множестве

всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень , которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равносильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень и уравнение (4) также имеет единственный положительный корень . Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы).

Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения задается неравенством . Когда мы переходим к уравнению , то для всех его корней это уравнение является верным равенством. Тогда выражение , стоящее в правой части этого равенства, всегда неотрицательно (), таким образом, и равное ему выражение также будет неотрицательным: . Но это и означает, что ОДЗ данного уравнения () учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения к уравнению ОДЗ заданного уравнения можно не записывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий. Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый ориентир для выполнения равносильных преобразований уравнений. По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и, наоборот, каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму.

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым ориентиром для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 8.)

Например, чтобы решить с помощью равносильных преобразований уравнение достаточно учесть его ОДЗ: и условие равенства дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внимание на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

. ОДЗ: . Тогда . Отсюда (удовлетворяет условию ОДЗ) или (не удовлетворяет условию ОДЗ).

Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности уравнений обобщим также формулировки простейших теорем о равносильности, известных из курса алгебры 7 класса.

Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).

Теорема 2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получаем уравнение, равносильное заданному (на ОДЗ заданного).

Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения.

Замечание. Для обозначения перехода от данного уравнения к равносильному ему уравнению можно применять специальный значок , но его использование при записи решений не является обязательным. Например, запись решения последнего из рассмотренных уравнений может быть такой.

Пример №423

Решите уравнение .

Решение:

► ОДЗ: и

На этой ОДЗ данное уравнение равносильно уравнениям:

то есть

Учтем ОДЗ. При

Таким образом, — корень.

Ответ:

Используем равносильные преобразования для решения данного уравнения. Для этого необходимо учесть ОДЗ, поэтому зафиксируем ее ограничения в начале решения.

Укажем, что в уравнениях ограничения ОДЗ можно только зафиксировать, но не решать, а в конце проверить, выполняются ли эти ограничения для найденных корней.

При переносе члена данного уравнения из одной части уравнения в другую с противоположным знаком получаем уравнение (1), равносильное заданному.

Приводя к общему знаменателю, раскрывая скобки и приводя подобные члены, снова получаем верное равенство и можем обосновать, что при выполнении обратных действий равенство также не нарушается, таким образом, полученные уравнения (1)-(3) равносильны заданному (на его ОДЗ).

Дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю. Но второе условие уже учтено в ограничениях ОДЗ, таким образом, получаем уравнение (4), равносильное заданному уравнению на его ОДЗ. Поскольку все преобразования были равносильными только с учетом ОДЗ, то мы должны проверить, удовлетворяет ли полученное число ограничениям ОДЗ.

Причины появления посторонних корней и потери корней при решении уравнений

Наиболее типичные случаи появления посторонних корней и потери корней приведены в таблице 9. Там же указано, как в каждом из этих случаев получить правильное (или полное) решение.

Применение свойств функций к решению уравнений

1. Конечная ОДЗ

Если область допустимых значений (ОДЗ) уравнения (неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения

Пример:

— корень (),

— не корень ().

2. Оценка левой и правой частей уравнения

Если надо решить уравнение вида и выяснилось, что то равенство между левой и правой частями возможно тогда и только тогда, когда и одновременно равны

Пример:

(так как ).

Итак, заданное уравнение равносильно системе

Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю

Пример:

Итак, заданное уравнение равносильно системе

Из первого уравнения получаем , что удовлетворяет всей системе

3. Использование возрастания и убывания функций

Схема решения уравнения

1. Подбираем один или несколько корней уравнения.

2. Доказываем, что других корней это уравнение не имеет (используя теоремы о корнях уравнения или оценку левой и правой частей уравнения)

Теоремы о корнях уравнения

Если в уравнении функция возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.

Пример:

Уравнение имеет единственный корень , то есть ), поскольку функция возрастает на всей области определения

Если в уравнении функция возрастает на некотором промежутке, а функция убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.

Пример:

Уравнение имеет единственный корень ( то есть ), поскольку возрастает на всей области определения , a убывает (на множестве , а следовательно, и при )

Объяснение и обоснование:

Конечная ОДЗ

Напомним, что в случае, когда дано уравнение , общая область определения для функций называется областью допустимых значений этого уравнения. Понятно, что каждый корень заданного уравнения принадлежит как области определения функции , так и области определения функции . Таким образом, каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях за счет анализа ОДЗ получить решение уравнения. Например, если дано уравнение \, то его ОДЗ можно записать с помощью системы . Решая эту систему, получаем то есть . Таким образом, ОДЗ данного уравнения состоит только из одного значения . Но если только для одного числа необходимо выяснить, является ли оно корнем данного уравнения, то для этого достаточно подставить это значение в уравнение. В результате получаем верное числовое равенство (). Следовательно, — корень данного уравнения. Других корней у этого уравнения быть не может, поскольку все корни уравнения находятся в его ОДЗ, а там нет других значений, кроме .

Рассмотренный пример позволяет выделить ориентир для решения аналогичных уравнений:

если ОДЗ уравнения (а также неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.

Замечание. В том случае, когда ОДЗ — пустое множество (не содержит ни одного числа), мы можем сразу дать ответ, что данное уравнение не имеет корней.

Например, если необходимо решить уравнение , то его ОДЗ задается системой то есть системой которая не имеет решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.

Оценка левой и правой частей уравнения

Некоторые уравнения можно решить с помощью оценки левой и правой частей уравнения.

Пусть дано уравнение , и нам удалось выяснить, что для всех допустимых значений значение , а значение .

Рассмотрим два случая:

Если , то равенство не может выполняться, потому что , то есть при данное уравнение корней не имеет. Остается только случай , но, учитывая необходимость выполнения равенства , имеем, что тогда и . Таким образом, мы обосновали, что выполнение равенства (при условии и ) гарантирует одновременное выполнение равенств и (и наоборот, если одновременно выполняются равенства и , то выполняется и равенство . Как было показано в п. 3.1, это и означает, что уравнение равносильно системе

Коротко это можно записать так:

Пример использования такого приема решения уравнений приведен в пункте 2 таблицы 10.

Аналогично предыдущим рассуждениям обосновывается и ориентир по решению уравнения , в котором все функции-слагаемые неотрицательны .

Если предположить, что , то сумма всех функций, стоящих в левой части этого уравнения, может равняться нулю только тогда, когда сумма будет отрицательной. Но это невозможно, поскольку по условию все функции неотрицательные. Таким образом, при данное уравнение не имеет корней. Эти же рассуждения можно повторить для любой другой функции-слагаемого. Остается единственная возможность — все функции-слагаемые равны нулю (очевидно, что в этом случае равенство обязательно будет выполняться). Таким образом, сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю.

Например, чтобы решить уравнение , достаточно перенести все члены в одну сторону, записать уравнение в виде и учесть, что функции неотрицательные. Таким образом, данное уравнение равносильно системе

Из второго уравнения получаем , что удовлетворяет и всей системе. Следовательно, данное уравнение имеет единственный корень .

Использование возрастания и убывания функций к решению уравнений

Использование возрастания и убывания функций к решению уравнений опирается на такое свойство: возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее области определения.

Полезно помнить специальные теоремы о корнях уравнения.

Теорема 1. Если в уравнении функция возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.

Графически утверждение теоремы проиллюстрировано на рисунке 52. Прямая пересекает график возрастающей на промежутке функции только в одной точке. Это и означает, что уравнение не может иметь больше одного корня на промежутке . Докажем это утверждение аналитически.

• Если на промежутке уравнение имеет корень , то . Других корней быть не может, поскольку для возрастающей функции при получаем неравенство , а при — неравенство . Таким образом, при . Аналогично и для убывающей функции при получаем .

Теорема 2. Если в уравнении функция возрастает на некотором промежутке, а функция убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.

Графически утверждение теоремы проиллюстрировано на рисунке 53.

• Если на промежутке уравнение имеет корень , то . Других корней быть не может, поскольку, например, для возрастающей функции и убывающей функции при имеем , a , таким образом, . Аналогично и при .

Каждая из этих теорем утверждает, что в рассмотренном промежутке данное уравнение может иметь не более чем один корень, то есть или это уравнение совсем не имеет корней, или оно имеет единственный корень. Если нам удалось подобрать один корень такого уравнения, то других корней в заданном промежутке уравнение не имеет.

Например, чтобы решить уравнение , достаточно заметить, что функция является возрастающей на всей числовой прямой (как сумма двух возрастающих функций) и что — корень этого уравнения (). Таким образом, данное уравнение имеет единственный корень .

Корень получен подбором. Как правило, подбор начинают с целых значений: которые подставляются в данное уравнение.

Заметим, что каждая из этих теорем гарантирует единственность корня уравнения (если он есть) только на промежутке возрастания (или убывания) соответствующей функции. Если функция имеет несколько промежутков возрастания и убывания, то приходится рассматривать каждый из них отдельно.

Пример:

Решим с помощью теоремы 2 уравнение .

► Сначала следует учесть его ОДЗ: и вспомнить, что функция на всей области определения не является ни убывающей, ни возрастающей (п. 2.2), но она убывает на каждом из промежутков и . Поэтому рассмотрим каждый из этих промежутков отдельно.

1) При данное уравнение имеет корень . Функция возрастает при (как было показано выше, она возрастает на множестве ), а функция убывает на промежутке . Таким образом, данное уравнение при имеет единственный корень .

2) При данное уравнение имеет корень . Функция возрастает при , а функция убывает на этом промежутке. Поэтому данное уравнение при имеет единственный корень . В ответ следует записать все найденные корни (хотя на каждом из промежутков корень единственный, но всего корней — два). Итак, данное уравнение имеет только два корня: 1 и -1.

Примеры решения задач:

Пример №424

Решите уравнение .

Решение:

► ОДЗ: . На ОДЗ . Тогда функция (как сумма двух взаимно обратных положительных чисел), а функция .

Таким образом, данное уравнение равносильно системе . Из второго уравнения системы получаем , что удовлетворяет и первому уравнению. Таким образом, система (а значит, и данное уравнение) имеет единственное решение .

Если раскрыть скобки и привести обе части уравнения к общему знаменателю, то для нахождения корней полученного уравнения придется решать полное уравнение восьмой степени, все корни которого мы не сможем найти.

Попытаемся оценить области значений функций, стоящих в левой и правой частях уравнения. Поскольку на ОДЗ , то в левой части уравнения стоит сумма двух взаимно обратных положительных чисел, которая всегда больше или равна 2. В правой части из 2 вычитается неотрицательное число . Таким образом, при всех значениях получаем значение, меньшее или равное 2. Равенство между левой и правой частями возможно тогда и только тогда, когда обе части равны 2.

Пример №425

Решите систему уравнений

Решение:

► ОДЗ: Рассмотрим функцию . На своей области определения эта функция является возрастающей (как сумма двух возрастающих функций). Тогда первое уравнение заданной системы, которое имеет вид , равносильно уравнению . Таким образом, на ОДЗ заданная система равносильна системе

Подставляя во второе уравнение системы, имеем , . Учитывая, что на ОДЗ , получаем . Тогда .

Иногда свойства функций удается применить при решении систем уравнений. Если заметить, что в левой и правой частях первого уравнения заданной системы стоят значения одной и той же функции, которая является возрастающей (как сумма двух возрастающих функций), то равенство для возрастающей функции возможно тогда и только тогда, когда , поскольку возрастающая функция может принимать одинаковые значения только при одном значении аргумента. (Заметим, что такое же свойство будет иметь место и для убывающей функции.)

Замечание. Утверждение, обоснованное в комментарии к задаче 2, может быть использовано при решении аналогичных задач. Коротко его можно сформулировать так: если функция является возрастающей (или убывающей) на определенном множестве, то на этом множестве

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Метод математической индукции
  • Система координат в пространстве
  • Иррациональные числа
  • Действительные числа
  • Интеграл и его применение
  • Первообразная и интегра
  • Уравнения и неравенства
  • Уравнения и неравенства содержащие знак модуля

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://spacemath.xyz/operatsii-nad-mnozhestvami/

http://www.evkova.org/uravnenie-opredelenie-i-vyichislenie-s-primerami-resheniya