Все способы решения дифференциальных уравнений второго порядка

Линейные дифференциальные уравнения второго порядка

Данная статья раскрывает смысл нахождения и алгоритм для общего решения линейных однородных и неоднородных дифференциальных уравнений второго порядка с подробным просмотром их решений.

Линейное однородное уравнение второго порядка имеет вид y » + p ( x ) · y ‘ + q ( x ) · y = 0 , неоднородное — y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) . F ( x ) , p ( x ) и q ( x ) являются функциями, которые непрерывны из интервала интегрирования x . Частным случаем принято считать p ( x ) = p и q ( x ) = q , то есть при наличии постоянных в записи функции.

Нахождение общего решения линейных дифференциальных уравнений

Общее решение y 0 для линейного однородного дифференциального уравнения (ЛОДУ) вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = 0 из интервала x при наличии постоянных коэффициентов f 0 ( x ) , f 1 ( x ) , . . . , f n — 1 ( x ) , располагаемых на x , считают линейную комбинацию n линейно независимых частных решений ЛОДУ y j , j = 1 , 2 , . . . , n , где имеются произвольные коэффициенты C j , j = 1 , 2 , . . . , n , то есть y 0 = ∑ j = 1 n C j · y j .

Общим решением y для линейного неоднородного дифференциального уравнения вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = f ( x ) из интервала x при наличии коэффициентов f 0 ( x ) , f 1 ( x ) , . . . , f n — 1 ( x ) и функции f ( x ) является сумма вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = 0 , где y

считается одним из общих решений ЛНДУ.

Отсюда следует, что

  • выражение y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 считается общим решением дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 , а y 1 и y 2 считаются линейно независимыми частными решениями;
  • y = y 0 + y

обозначают в качестве общего решения уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) , где y

принимает одно из любых частных решений, y 0 соответствует общему решению ЛОДУ.

После чего необходимо находить y 1 , y 2 и y

Если функции простые, то применяется метод подбора.

Линейно независимые функции y 1 и y 2 находятся из

1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 · x , e k 2 · x , . . . , e k n · x 3 ) e k 1 · x , x · e k 1 · x , . . . , x n 1 · e k 1 · x , e k 2 · x , x · e k 2 · x , . . . , x n 2 · e k 2 · x , . . . e k p · x , x · e k p · x , . . . , x n p · e k p · x .

Линейную независимость проверяют определителем Вронского вида W ( x ) = y 1 ( x ) y 2 ( x ) y 1 ‘ ( x ) y 2 ‘ ( x ) . Когда функции располагаются на интервале х , тогда такой определитель не равен 0 на заданном промежутке.

Когда имеются функции вида y 1 = 1 и y 2 = x , где x принадлежит множеству действительных чисел, то W ( x ) = 1 x 1 ‘ x ‘ = 1 x 0 1 = 1 ≠ 0 ∀ x ∈ R .

Функции вида y 1 = sin x и y 2 = cos x считаются линейно независимы на области действительных чисел, потому как W ( x ) = sin x cos x ( sin x ) ‘ ( cos x ) ‘ = sin x cos x cos x — sin x = = — sin 2 x — cos 2 x = — 1 ≠ 0 ∀ x ∈ R

Функции y 1 = — x — 1 и y 2 = x + 1 считаются линейно независимыми из интервала ( — ∞ ; + ∞ )

W ( x ) = — x — 1 x + 1 — x — 1 ‘ ( x + 1 ) ‘ = — x — 1 x + 1 — 1 1 = = — x — 1 + x + 1 = 0 ∀ x ∈ R

Не всегда можно подобрать y 1 , y 2 , y

. Поэтому следует использовать другой метод. При наличии ненулевого частного решения y 1 ЛОДУ второго порядка y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) , тогда общее решение находится понижением степени и подстановкой y = y 1 · ∫ u ( x ) d x .

Найти общее решение уравнение вида y » — y ‘ + y x = 0 .

Решение

Частное решение записывается как y 1 = x для дифференциального уравнения y » — y ‘ + y x = 0 , когда x не равен 0 . Необходимо перейти к понижению степени при помощи постановки. Тогда получим уравнение вида y = y 1 · ∫ u ( x ) d x = x · ∫ u ( x ) d x , а итоговое значение примет вид интеграла ∫ u ( x ) d x = y x .

По правилу дифференцирования произведения и свойству неопределенного интеграла получаем выражение вида

y ‘ = x · ∫ u ( x ) d x ‘ = x ‘ · ∫ u ( x ) d x + x · ∫ u ( x ) d x ‘ = = ∫ u ( x ) d x + x · u ( x ) = y x + x · u ( x ) y » = ∫ u ( x ) d x + x · u ( x ) ‘ = ∫ u ( x ) d x ‘ + x ‘ · u ( x ) + x · u ‘ ( x ) = = 2 u ( x ) + x · u ‘ ( x )

Производим подстановку в исходное выражение. Запишем равенство вида:

y » — y ‘ + y x = 0 ⇔ 2 u + x · u ‘ — y x — x · u + y x = 0 ⇔ 2 u + x · u ‘ — x · u = 0 ⇔ x · d u d x + u · — x + 2 = 0 ⇔ d u u = 1 — 2 x d x , u = 0

Интегрируем обе части выражения и получаем, что ln u + C 1 = x — 2 ln x + C 2 ⇔ ln u = x + ln 1 x 2 + C 2 — C 1 . Переходим к записи общего вида выражения. Тогда она примет вид u = C · e x x 2 с C являющейся произвольной постоянной.

Ответ: из выражения y = x · ∫ u d x очевидно, что общее решение заданного ЛОДУ примет вид y = x · C · ∫ e x x 2 d x = x · C · ( F ( x ) + C 3 ) , когда F ( x ) считается одной из первообразных функции e x x 2 .

Для решения неоднородного дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) нужно подбирать y

, если возможно найти y 1 и y 2 . Поиск общего решения производится при помощи метода вариации произвольных постоянных.

В таком случаем ЛОДУ принимает вид y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 . Преобразовывая произвольные постоянные для общего решения, ЛНДУ принимает вид y 0 = C 1 ( x ) ⋅ y 1 + C 2 ( x ) ⋅ y 2 , где производные неизвестных функций C 1 ( x ) и C 2 ( x ) можно определить из системы вида C 1 ‘ ( x ) · y 1 + C 2 ‘ ( x ) · y 2 = 0 C 1 ‘ ( x ) · y 1 ‘ + C 2 ‘ ( x ) · y 2 ‘ = f ( x ) , а получение самих функций производится путем интегрирования.

Найти общее решение уравнения y » — y = 2 x .

Решение

Для решения необходимо обратить внимание на его частные решения. Для ЛОДУ y » — y = 0 они являются y 1 = e — x и y 2 = e x , то есть выражение вида y 0 = C 1 · e — x + C 2 · e x . Изменяя постоянные, общее решение получит вид

y = C 1 ( x ) · e — x + C 2 ( x ) · e x .

Необходимо составить систему линейных уравнений и решить

C 1 ‘ ( x ) · y 1 + C 2 ‘ ( x ) · y 2 = 0 C 1 ‘ ( x ) · y 1 ‘ + C 2 ‘ ( x ) · y 2 ‘ = f ( x ) ⇔ C 1 ‘ ( x ) · e — x + C 2 ‘ ( x ) · e x = 0 — C 1 ‘ ( x ) · e — x + C 2 ‘ ( x ) · e x = 2 x

Чтобы разрешить ее, следует применить метод Крамера. Тогда

∆ = e — x e x — e — x e x = e — x · e x + e — x · e x = 2 ∆ C 1 ‘ ( x ) = 0 e x 2 x e x = — ( 2 e ) x ⇒ C 1 ‘ ( x ) = ∆ C 1 ‘ ( x ) ∆ = — 1 2 · 2 e x ∆ C 2 ‘ ( x ) = e — x 0 — e — x 2 x = 2 e x ⇒ C 2 ‘ = ∆ C 2 ‘ ( x ) ∆ = 1 2 · 2 e x

После интегрирования полученных выражений для того, чтобы найти C 1 ( x ) и C 2 ( x ) , запишем, что

C 1 ( x ) = — 1 2 · ∫ ( 2 e ) x d x = — 1 2 · ( 2 e ) x ln ( 2 e ) + C 3 = = — 1 2 · ( 2 e ) x ln 2 + 1 + C 3 C 2 ( x ) = 1 2 · ∫ 2 e x d x = 1 2 · 1 ln 2 e · 2 e x + C 4 = = 1 2 · 1 ln 2 — 1 · 2 e x + C 4

Ответ: общим решением для заданного уравнения получим уравнение вида

y = — 1 2 · ( 2 e ) x ln 2 + 1 + C 3 · e — x + 1 2 · 1 ln 2 — 1 · 2 e x + C 4 · e x .

Итоги

  • Поиск общего решения ЛОДУ 2 порядка y » + p ( x ) · y ‘ + q ( x ) · y = 0 выполняется из y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 , где y 1 и y 2 считаются линейно независимыми частными решениями. Для подбора частных решений y 1 и y 2 чаще всего начинается с нахождения общего дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 . Когда подбор невозможен, тогда производится снижение порядка с помощью замены y = y 1 · ∫ u ( x ) d x , причем его решение приведет к общему виду ЛОДУ второго прядка.
  • Поиск общего решения ЛНДУ 2 порядка вида y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) производится с помощью y = y 0 + y

является любым частным решением, а y 0 считают в качестве общего решения ЛОДУ. Нахождение y 0 , то есть общего дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 , производится первоначально. После чего производится подбор y

. Если необходимо, то в начале производится подбор y 1 и y 2 для определения общего решения ЛНДУ с помощью применения метода вариации произвольных постоянных.

Примеры решений дифференциальных уравнений второго порядка методом Лагранжа

Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .

Пример 1

Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)

Шаг 1. Решение однородного уравнения

Вначале мы решаем однородное дифференциальное уравнение:
(2)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение второго порядка.

Решаем квадратное уравнение:
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .

Шаг 2. Вариация постоянных – замена постоянных функциями

Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .

Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;

.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .

Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .

Решение системы уравнений

Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные:
;
.

Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .

Общее решение исходного уравнения:

;
.

Пример 2

Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)

Шаг 1. Решение однородного уравнения

Решаем однородное дифференциальное уравнение:

(9)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .

Шаг 2. Вариация постоянных – замена постоянных функциями

Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .

Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .

Решение системы уравнений

Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.

Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Первый интеграл немного сложней (см. Интегрирование тригонометрических рациональных функций). Делаем подстановку :

.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.

Общее решение исходного уравнения:

.

Автор: Олег Одинцов . Опубликовано: 05-08-2013 Изменено: 19-06-2017

Лекция по высшей математике»Дифференциальные уравнения второго порядка»(для 26 гр.)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

1) ОСНОВНЫЕ ПОНЯТИЯ

Дифференциальным уравнением второго порядка называется уравнение, содержащее неизвестную (искомую) функцию у(х) , независимую переменную х , первую и вторую производные у’, у» или дифференциалы

Дифференциальное уравнение второго порядка символически можно записать в общем виде следующим образом:

Дифференциальное уравнение второго порядка, разрешенное относительно второй производной, имеет вид:

Решением дифференциального уравнения называется всякая функция, которая обращает его в тождество. Дифференциальное уравнение второго порядка имеет бесчисленное множество решений, которые можно представить в виде функции Эта совокупность решений называется общим решением .

Функция, получающаяся из общего решения при конкретных значениях постоянных С 1 и С 2 , называется частным решением . Частное решение находится при помощи задания начальных условий: у(х=х 0 )=у 0 и у'(х=х 0 )=у 0 , где х 0 , у 0 , у 0 – конкретные числа.

Задача отыскания частного решения дифференциального уравнения, удовлетворяющего начальному условию, называется задачей Коши . Практически задачу Коши решают следующим образом: находят общее решение, затем в него подставляют начальные условия, получают систему двух уравнений, определяют произвольные постоянные С 1 и С 2 и подставляют их конкретные значения в общее решение.

2) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО

ПОРЯДКА, ДОПУСКАЮЩИЕ ПОНИЖЕНИЕ ПОРЯДКА

Рассмотрим некоторые типы дифференциальных уравнений второго порядка, которые позволяют понизить порядок уравнения и привести его к уравнениям первого порядка.

2.1. Дифференциальное уравнение вида

Правая часть уравнения не содержит у и у’ . Уравнение решается путем последовательного интегрирования. Найдем сначала первую производную (промежуточное общее решение):

Интегрируя еще раз, получим общее решение:

Пример 1. Найти частное решение уравнения при заданных начальных условиях у(х= 0 )= 1 и у'(х= 0 )= 1.

Решение. Последовательно интегрируя, найдем сначала первую производную (промежуточное общее решение):

Интегрируя еще раз, получим общее решение:

Так как мы интегрировали дважды, то получили две произвольные постоянные С 1 и С 2 . Подставляя начальные условия в соотношения (2.1) и (2.2), получим С 1 =1 и С 2 =1. Следовательно, частное решение имеет вид:

2.2. Дифференциальное уравнение вида

Правая часть уравнения не содержит искомой функции у . Уравнение решается с помощью подстановки:

где z – функция от х . Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка: .

Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:

Разделяя переменные и интегрируя, получим общее решение

Пример 2. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:

Разделяем переменные: Интегрируем:

Получаем промежуточное общее решение: или

Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными: или

Интегрируя, получим общее решение:

Пример 3. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

Уравнение (2.3) является однородным и решается с помощью подстановки:

Подставляя (2.4) в (2.3), получим дифференциальное уравнение с разделяющимися переменными:

Сокращаем на х и разделяем переменные:

Интеграл в левой части равенства (2.5) вычисляем методом замены переменной:

После интегрирования (2.5) получаем промежуточное общее решение:

Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или .

Разделяем переменные и интегрируем: (2.6)

Интеграл, стоящий в правой части, вычисляем с помощью формулы интегрирования по частям:

После интегрирования (2.6) получим общее решение:

Пример 4. Найти общее решение уравнения

Решение. Сделаем подстановку: Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

Уравнение (2.7) является линейным неоднородным и решается с помощью подстановки:

Подставляя (2.8) в (2.7), получим:

Квадратную скобку приравняем к нулю и решим полученное уравнение с разделяющимися переменными:

Разделяем переменные и интегрируем: Получаем: или

Функцию подставляем в соотношение (2.9):

Сокращаем на х , разделяем переменные и интегрируем:

Делая обратную замену получим дифференциальное уравнение первого порядка с разделяющимися переменными: или

Разделяем переменные и интегрируем:

Интеграл, стоящий в правой части (2.10), вычисляем с помощью формулы интегрирования по частям:

После интегрирования (2.10) получим общее решение:

2.3. Дифференциальное уравнение вида

Правая часть уравнения не содержит независимой переменной х . Уравнение решается с помощью подстановки: или

где z – функция от у , т.е. z = z [ y ( x )] – сложная функция от х . Тогда :

Исходное уравнение преобразуется в дифференциальное уравнение первого порядка:

где z искомая функция, у – независимая переменная.

Решая это уравнение, найдем общее решение в виде Делая обратную замену получим еще одно дифференциальное уравнение первого порядка:

Разделяя переменные и интегрируя, получим общее решение

Пример 5. Найти общее решение уравнения

Решение. Сделаем подстановку:

Тогда исходное уравнение преобразуется в дифференциальное уравнение первого порядка с разделяющимися переменными:

Сокращаем на z ( z ≠0) и разделяем переменные:

Получаем промежуточное общее решение: или

Делая обратную замену получим еще одно дифференциальное уравнение первого порядка с разделяющимися переменными:

Разделяем переменные: Интегрируя, получим общее решение:

3) Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейные однородные дифференциальные уравнения.

Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида , (1)

т.е. уравнение, которое содержит искомую функцию и её производные только в первой степени и не содержит их произведений. В этом уравнении и — некоторые числа, а функция задана на некотором интервале .

Если на интервале , то уравнение (1) примет вид , (2)

и называется линейным однородным . В противном случае уравнение (1) называется линейным неоднородным . Рассмотрим комплексную функцию , (3)

где и — действительные функции. Если функция (3) является комплексным решением уравнения (2), то и действительная часть , и мнимая часть решения в отдельности являются решениями этого же однородного уравнения. Таким образом, всякое комплексное решение уравнения (2) порождает два действительных решения этого уравнения.

Решения однородного линейного уравнения обладают свойствами:

Если есть решение уравнения (2), то и функция , где С – произвольная постоянная, также будет решением уравнения (2);

Если и есть решения уравнения (2), то и функция также будет решением уравнения (2);

Если и есть решения уравнения (2), то их линейная комбинация также будет решением уравнения (2), где и – произвольные постоянные.

Функции и называются линейно зависимыми на интервале , если существуют такие числа и , не равные нулю одновременно, что на этом интервале выполняется равенство

Если равенство (4) имеет место только тогда, когда и , то функции и называются линейно независимыми на интервале .

Пример 1 . Функции и линейно зависимы, так как на всей числовой прямой. В этом примере .

Пример 2 . Функции и линейно независимы на любом интервале, т. к. равенство возможно лишь в случае, когда и , и .

Построение общего решения линейного однородного уравнения.

Для того, чтобы найти общее решение уравнения (2), нужно найти два его линейно независимых решения и . Линейная комбинация этих решений , где и – произвольные постоянные, и даст общее решение линейного однородного уравнения. Линейно независимые решения уравнения (2) будем искать

в виде , (5) ,где – некоторое число. Тогда , . Подставим эти выражения в уравнение (2):

Так как , то . Таким образом, функция будет решением уравнения (2), если будет удовлетворять уравнению . (6)

Уравнение (6) называется характеристическим уравнением для уравнения (2). Это уравнение является алгебраическим квадратным уравнением.

Пусть и есть корни этого уравнения. Они могут быть или действительными и различными, или комплексными, или действительными и равными. Рассмотрим эти случаи.

Пусть корни и характеристического уравнения действительные и различны. Тогда решениями уравнения (2) будут функции и . Эти решения линейно независимы, так как равенство может выполняться лишь тогда, когда и , и . Поэтому общее решение уравнения (2) имеет вид , где и — произвольные постоянные.

Пример 3 . Найти общее решение дифференциального уравнения .

Решение . Характеристическим уравнением для данного дифференциального будет . Решив это квадратное уравнение, найдём его корни и . Функции и являются решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Комплексным числом называется выражение вида , где и — действительные числа, а называется мнимой единицей. Если , то число называется чисто мнимым. Если же , то число отождествляется с действительным числом .

Число называется действительной частью комплексного числа, а — мнимой частью. Если два комплексных числа отличаются друг от друга только знаком мнимой части, то они зазываются сопряжёнными: ,

Пример 4 . Решить квадратное уравнение .

Решение . Дискриминант уравнения . Тогда . Аналогично, . Таким образом, данное квадратное уравнение имеет сопряжённые комплексные корни.

Пусть корни характеристического уравнения комплексные , т.е. , , где . Решения уравнения (2) можно записать в виде , или , . По формулам Эйлера: , .

Тогда , . Как известно, если комплексная функция является решением лин. одн. ур-я, то решениями этого уравнения являются и действительная, и мнимая части этой функции. Таким образом, решениями уравнения (2) будут функции и . Так как равенство

может выполняться только в том случае, если и , то эти решения линейно независимы. Следовательно, общее решение уравнения (2) имеет вид ,

где и — произвольные постоянные.

Пример 5 . Найти общее решение дифференциального уравнения .

Решение . Уравнение является характеристическим для данного дифференциального. Решим его и получим комплексные корни , . Функции и являются линейно независимыми решениями дифференциального уравнения. Общее решение этого уравнения имеет вид .

Пусть корни характеристического уравнения действительные и равные, т.е. . Тогда решениями уравнения (2) являются функции и . Эти решения линейно независимы, так как выражение может быть тождественно равным нулю только тогда, когда и . Следовательно, общее решение уравнения (2) имеет вид .

Пример 6 . Найти общее решение дифференциального уравнения .

Решение . Характеристическое уравнение имеет равные корни . В этом случае линейно независимыми решениями дифференциального уравнения являются функции и . Общее решение имеет вид .

Неоднородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами и специальной правой частью.

Общее решение линейного неоднородного уравнения (1) равно сумме общего решения соответствующего однородного уравнения и любого частного решения неоднородного уравнения: .

В некоторых случаях частное решение неоднородного уравнения можно найти довольно просто по виду правой части уравнения (1). Рассмотрим случаи, когда это возможно.

Пусть неоднородное уравнение имеет вид , (7)

т.е. правая часть неоднородного уравнения является многочленом степени m . Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде многочлена степени m , т.е. .

Коэффициенты определяются в процессе нахождения частного решения.

Если же является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде .

Пример 7 . Найти общее решение дифференциального уравнения .

Решение . Соответствующим однородным уравнением для данного уравнения является

. Его характеристическое уравнение имеет корни и .

Общее решение однородного уравнения имеет вид .

Так как не является корнем характеристического уравнения, то частное решение неоднородного уравнения будем искать в виде функции . Найдём производные этой функции , и подставим их в данное уравнение :

или . Приравняем коэффициенты при и свободные члены: Решив данную систему , получим , . Тогда частное решение неоднородного уравнения имеет вид , а общим решением данного неоднородного уравнения будет сумма общего решения соответствующего однородного уравнения и частного решения неоднородного:

Пусть неоднородное уравнение имеет вид (8)

Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Если же есть корень характеристического уравнения кратности k ( k =1 или k =2), то в этом случае частное решение неоднородного уравнения будет иметь вид .

Пример 8 . Найти общее решение дифференциального уравнения .

Решение . Характеристическое уравнение для соответствующего однородного уравнения имеет вид . Его корни , . В этом случае общее решение соответствующего однородного уравнения записывается в виде .

Так как число 3 не является корнем характеристического уравнения, то частное решение неоднородного уравнения следует искать в виде . Найдём производные первого и второго порядков: ,. Подставим в дифференциальное уравнение: +,

Приравняем коэффициенты при и свободные члены:

Тогда частное решение данного уравнения имеет вид , а общее решение


источники:

http://1cov-edu.ru/differentsialnye-uravneniya/lineinie_postoyannie_koeffitsienti/neodnorodnie_lagranzha/primer1/

http://infourok.ru/lekciya-po-visshey-matematikedifferencialnie-uravneniya-vtorogo-poryadkadlya-gr-2311306.html