Все способы решения тригонометрических уравнений

Способы решения тригонометрических уравнений. 10-й класс

Разделы: Математика

Класс: 10

«Уравнения будут существовать вечно».

Цели урока:

  • Образовательные:
    • углубление понимания методов решения тригонометрических уравнений;
    • сформировать навыки различать, правильно отбирать способы решения тригонометрических уравнений.
  • Воспитательные:
    • воспитание познавательного интереса к учебному процессу;
    • формирование умения анализировать поставленную задачу;
    • способствовать улучшению психологического климата в классе.
  • Развивающие:
    • способствовать развитию навыка самостоятельного приобретения знаний;
    • способствовать умению учащихся аргументировать свою точку зрения;

Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.

1 урок

I. Актуализация опорных знаний

Устно решить уравнения:

1) cosx = 1;
2) 2 cosx = 1;
3) cosx = –;
4) sin2x = 0;
5) sinx = –;
6) sinx = ;
7) tgx = ;
8) cos 2 x – sin 2 x = 0

1) х = 2к;
2) х = ± + 2к;
3) х =± + 2к;
4) х = к;
5) х = (–1) + к;
6) х = (–1) + 2к;
7) х = + к;
8) х = + к; к Z.

II. Изучение нового материала

– Сегодня мы с вами рассмотрим более сложные тригонометрические уравнения. Рассмотрим 10 способов их решения. Далее будет два урока для закрепления, и на следующий урок будет проверочная работа. На стенде «К уроку» вывешены задания, аналогичные которым будут на проверочной работе, надо их прорешать до проверочной работы. (Накануне, перед проверочной работой, вывесить на стенде решения этих заданий).

Итак, переходим к рассмотрению способов решения тригонометрических уравнений. Одни из этих способов вам, наверное, покажутся трудными, а другие – лёгкими, т.к. некоторыми приёмами решения уравнений вы уже владеете.

Четверо учащихся класса получили индивидуальное задание: разобраться и показать вам 4 способа решения тригонометрических уравнений.

(Выступающие учащиеся заранее подготовили слайды. Остальные учащиеся класса записывают основные этапы решения уравнений в тетрадь.)

1 ученик: 1 способ. Решение уравнений разложением на множители

sin 4x = 3 cos 2x

Для решения уравнения воспользуемся формулой синуса двойного угла sin 2 = 2 sin cos
2 sin 2x cos 2x – 3 cos 2x = 0,
cos 2x (2 sin 2x – 3) = 0. Произведение этих множителей равно нулю, если хотя бы один из множителей будет равен нулю.

2x = + к, к Z или sin 2x = 1,5 – нет решений, т.к | sin| 1
x = + к; к Z.
Ответ: x = + к , к Z.

2 ученик. 2 способ. Решение уравнений преобразованием суммы или разности тригонометрических функций в произведение

cos 3x + sin 2x – sin 4x = 0.

Для решения уравнения воспользуемся формулой sin– sin = 2 sin сos

cos 3x + 2 sin сos = 0,

сos 3x – 2 sin x cos 3x = 0,

cos 3x (1 – 2 sinx) = 0. Полученное уравнение равносильно совокупности двух уравнений:

Множество решений второго уравнения полностью входит во множество решений первого уравнения. Значит

Ответ:

3 ученик. 3 способ. Решение уравнений преобразованием произведения тригонометрических функций в сумму

sin 5x cos 3x = sin 6x cos2x.

Для решения уравнения воспользуемся формулой

Ответ:

4 ученик. 4 способ. Решение уравнений, сводящихся к квадратным уравнениям

3 sin x – 2 cos 2 x = 0,
3 sin x – 2 (1 – sin 2 x ) = 0,
2 sin 2 x + 3 sin x – 2 = 0,

Пусть sin x = t, где | t |. Получим квадратное уравнение 2t 2 + 3t – 2 = 0,

. Таким образом . не удовлетворяет условию | t |.

Значит sin x = . Поэтому .

Ответ:

III. Закрепление изученного по учебнику А. Н. Колмогорова

1. № 164 (а), 167 (а) (квадратное уравнение)
2. № 168 (а) (разложение на множители)
3. № 174 (а) (преобразование суммы в произведение)
4. (преобразование произведения в сумму)

(В конце урока показать решение этих уравнений на экране для проверки)

№ 164 (а)

2 sin 2 x + sin x – 1 = 0.
Пусть sin x = t, | t | 1. Тогда
2 t 2 + t – 1 = 0, t = – 1, t= . Откуда

Ответ: –.

№ 167 (а)

3 tg 2 x + 2 tg x – 1 = 0.

Пусть tg x = 1, тогда получим уравнение 3 t 2 + 2 t – 1 = 0.

Ответ:

№ 168 (а )

Ответ:

№ 174 (а )

Ответ:

Решить уравнение:

Ответ:

2 урок (урок-лекция)

IV. Изучение нового материала (продолжение)

– Итак, продолжим изучение способов решения тригонометрических уравнений.

5 способ. Решение однородных тригонометрических уравнений

Уравнения вида a sin x + b cos x = 0, где a и b – некоторые числа, называются однородными уравнениями первой степени относительно sin x или cos x.

sin x – cos x = 0. Разделим обе части уравнения на cos x. Так можно сделать, потери корня не произойдёт, т.к. , если cos x = 0, то sin x = 0. Но это противоречит основному тригонометрическому тождеству sin 2 x + cos 2 x = 1.

Получим tg x – 1 = 0.

Ответ:

Уравнения вида a sin 2 x + bcos 2 x + c sin x cos x = 0 , где a, b, c –некоторые числа, называются однородными уравнениями второй степени относительно sin x или cos x.

sin 2 x – 3 sin x cos x + 2 cos 2 = 0. Разделим обе части уравнения на cos x, при этом потери корня не произойдёт, т.к. cos x = 0 не является корнем данного уравнения.

tg 2 x – 3tg x + 2 = 0.

Пусть tg x = t. D = 9 – 8 = 1.

тогда Отсюда tg x = 2 или tg x = 1.

В итоге x = arctg 2 + , x =

Ответ: arctg 2 + ,

Рассмотрим ещё одно уравнение: 3 sin 2 x – 3 sin x cos x + 4 cos 2 x = 2.
Преобразуем правую часть уравнения в виде 2 = 2 · 1 = 2 · (sin 2 x + cos 2 x). Тогда получим:
3sin 2 x – 3sin x cos x + 4cos 2 x = 2 · (sin 2 x + cos 2 x),
3sin 2 x – 3sin x cos x + 4cos 2 x – 2sin 2 x – 2 cos 2 x = 0,
sin 2 x – 3sin x cos x + 2cos 2 x = 0. (Получили 2 уравнение, которое уже разобрали).

Ответ: arctg 2 + k,

6 способ. Решение линейных тригонометрических уравнений

Линейным тригонометрическим уравнением называется уравнение вида a sin x + b cos x = с, где a, b, c – некоторые числа.

Рассмотрим уравнение sin x + cos x = – 1.
Перепишем уравнение в виде:

Учитывая, что и, получим:

Ответ:

7 способ. Введение дополнительного аргумента

Выражение a cos x + b sin x можно преобразовать:

.

(это преобразование мы уже ранее использовали при упрощении тригонометрических выражений)

Введём дополнительный аргумент – угол такой, что

Тогда

Рассмотрим уравнение: 3 sinx + 4 cosx = 1.

Учтём, что . Тогда получим

0,6 sin x + 0,8 cosx = 1. Введём дополнительный аргумент – угол такой, что , т.е. = arcsin 0,6. Далее получим

Ответ: – arcsin 0,8 + +

8 способ. Уравнения вида Р

Такого рода уравнения удобно решать при помощи введения вспомогательной переменной t = sin x ± cosx. Тогда 1 ± 2 sinx cosx = t 2 .

Решить уравнение: sinx + cosx + 4 sinx cosx – 1 = 0.

Введём новую переменную t = sinx + cosx, тогда t 2 = sin 2 x + 2sin x cos x + cos 2 = 1 + 2 sin x cos x Откуда sin x cos x = . Следовательно получим:

t + 2 (t 2 – 1) – 1 = 0.
2 t 2 + t – 2 – 1 = 0,
2 t 2 + t – 3 = 0..Решив уравнение, получим = 1, =.

sinx + cosx = 1 или sinx + cosx =

Ответ:

9 способ. Решение уравнений, содержащих тригонометрические функции под знаком радикала.

Решить уравнение:

В соответствии с общим правилом решения иррациональных уравнений вида, запишем систему, равносильную исходному уравнению:

Решим уравнение 1 – cos x = 1 – cos 2 x.

1 – cos x = 1 – cos 2 x,
1 – cos x – (1 – cos x) (1 + cos x) = 0,
(1 – cos x) (1 – 1 – cos x) = 0,
– (1 – cos x) cos x = 0.

Условию удовлетворяют только решения

Ответ:

10 способ. Решение уравнений с использованием ограниченности тригонометрических функций y = sin x и y = cos x.

Решить уравнение: sin x + sin 9x = 2.
Так как при любых значениях х sin x 1, то данное уравнение равносильно системе:

Решение системы

Ответ:

V. Итог урока

Таким образом мы сегодня рассмотрели 10 различных способов решения тригонометрических уравнений. Безусловно, многие из приведённых задач могут быть решены несколькими способами.

(Пятерым наиболее подготовленным учащимся , а также всем желающим дать индивидуальное творческое задание: найти различные способы решения тригонометрического уравнения sinx + cosx = 1 )

Домашнее задание: № 164 -170 (в, г).

Все способы решения тригонометрических уравнений

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Методы решения тригонометрических уравнений
методическая разработка по алгебре (11 класс) на тему

В работе рассматриваются различные способы решения тригонометрических уравнений

и основные ошибки, которые при этом допускаются. Материал можно использовать

при подготовке к ЕГЭ как наиболее подготовленными школьниками, так и учителями.

Скачать:

ВложениеРазмер
metody_resheniya_trigonometricheskih_uravneniy.doc425.5 КБ

Предварительный просмотр:

Методы решения тригонометрических уравнений, неравенств и систем.

Тригонометрическим уравнением называется равенство тригонометрических выражений, содержащих переменную только под знаком тригонометрических функций. Решить тригонометрическое уравнение – значит найти все его корни – все значения неизвестного, удовлетворяющие уравнению. Тригонометрические уравнения сводятся цепочкой равносильных преобразований, заменами и решениями алгебраических уравнений к простейшим тригонометрическим уравнениям. Уравнения sin x = х; tg 3x = х 2 +1 и т.д. не являются тригонометрическими и, как правило, решаются приближенно или графически. Может случится так, что уравнение не является тригонометрическим согласно определению, однако оно может быть сведено к тригонометрическому. Например, 2(х – 6) cos 2x = х – 6, (х – 6)(2 cos 2x – 1) = 0, откуда х = 6 или cos 2x = , х = + π n, nZ.

Выделим основные методы решения тригонометрических равнений

  1. Разложение на множители.
  2. Введение новой переменной:

а) сведение к квадратному;

б) универсальная подстановка;

в) введение вспомогательного аргумента.

3. Сведение к однородному уравнению.

4. Применение формул.

5. Использование свойств функций, входящих в уравнение:

а) обращение к условию равенства тригонометрических функций;

б) использование свойства ограниченности функции.

1.Уравнения, в которых все функции выражаются через одну тригонометрическую функцию от одного и того же аргумента.

Примеры: sin 2 x – cos x – 1 = 0,

tg 3x + 2 ctg 3x – 3 = 0.

Преобразованиями sin 2 x= 1 — cos 2 x и ctg 3x = эти уравнения приводятся к алгебраическим, решая которые получаем простейшие тригонометрические уравнения. Метод сведения к квадратному состоит в том, что, пользуясь изученными формулами, надо преобразовать уравнение к такому виду, чтобы какую-то функцию (например, sin x или cos x) или комбинацию функций обозначить через y, получив при этом квадратное уравнение относительно y.

2.Уравнения, решаемые разложением на множители.

Под разложением на множители понимается представление данного выражения в виде произведения нескольких множителей. Если в одной части уравнения стоит несколько множителей, а в другой – 0, то каждый множитель приравнивается к нулю. Таким образом, данное уравнение можно представить в виде совокупности более простых уравнений.

sin 4x — cos 2x = 0,

2 sin 2x cos 2x — cos 2x = 0,

cos 2x (2 sin 2x – 1) = 0,

cos 2x = 0 или 2 sin 2x – 1 = 0.

3.Уравнения однородные относительно sin x и cos x.

Примеры: 3 sin 2 x + 4 sin x cos x + cos 2 x =0,

2 sin 3 5x — 2 sin 2 5x cos 5x + sin 5x cos 2 5x – cos 3 x =0,

3 sin 7x — 2 cos 7x =0.

Если первый коэффициент не равен нулю, то разделив обе части уравнения на cos n x, получим уравнение n- степени, относительно tg. Решая полученное уравнение перейдем к простейшему. При делении уравнения на выражение, содержащее неизвестное, могут быть потеряны корни. Поэтому нужно проверить, не являются ли корни уравнения cos x =0 корнями данного уравнения. Если cos x =0, то из уравнений следует, что sin x = 0. Однако sin x и cos x не могут одновременно равняться нулю, так как они связаны равенством sin 2 x + cos 2 x = 1. Следовательно, при делении уравнения на cos n x, получаем уравнение, равносильное данному. В случае, если первый или последний коэффициент равен нулю, то имеет смысл вынести за скобки sin x или cos x. Решить уравнение приравняв к нулю каждый множитель.

4.Уравнения, сводящиеся к однородным.

Примеры: 3 sin 2 x — sin x cos x — 4cos 2 x =2,

sin 3 x + sin x cos 2 x – 2cos x =0.

Эти уравнения сводятся к однородным уравнениям следующим образом:

3 sin 2 x — sin x cos x — 4cos 2 x =2 (sin 2 x + cos 2 x),

sin 3 x + sin x cos 2 x – 2cos x(sin 2 x + cos 2 x) =0.

5. Уравнения, линейные относительно sin x и cos x

а sin x + в cos x = с, где а, в и с – любые действительные числа.

Если а=в=0, а с0, то уравнение теряет смысл;

Если а=в=с=0, то х – любое действительное число, то есть уравнение обращается в тождество.

Рассмотрим случай, когда а,в,с 0.

sin x + 4 cos x = 1,

3 sin 5x — 4 cos 5x = 2,

2 sin 3x + 5 cos 3x = 8.

Последнее уравнение не имеет решений, так как левая часть его не превосходит 7.

Уравнения, этого вида можно решить многими способами: с помощью универсальной подстановки, выразив sin x и cos x через tg ; сведением уравнения к однородному; введением вспомогательного аргумента и другими.

Рассмотрим последний из них.

Разделим обе части уравнения на .

Так как += 1, то найдется аргумент φ, при котором

Уравнение примет вид sin x cos φ + sin φ cos x = .

Используя формулу получим sin (x+ φ) = .

Следовательно решением уравнения будет х = (-1) n arcsin — arccos+ π n, nZ.

Решение этого уравнения существует при a 2 + b 2 c 2 .

6.Уравнения, сводящиеся к равенству одной тригонометрической функции от различных аргументов:

1) sin x = sin у, 2) cos x = cos у, 3) tg x = tg у.

При решении этих уравнений можно применить метод использования условий равенства одноименных тригонометрических функций. Равенство этих функций имеет место тогда и только тогда, когда, соответственно, x = (-1) n y + π n,

f(x) = π — g(x) + 2 π n

Примеры: cos 4x = sin 6х, сtg x = tg .

Первое уравнение с помощью формул приведения приводим к виду : sin(- 4x) = sin 6х, а второе – к виду tg (- x) = tg .

Решим уравнение tg 3x tg (5x + ) = 1.

Разделим обе части уравнения на tg 3x. Это допустимо, так как в данных условиях tg 3x не может равняться нулю:

tg (5x + ) = , tg (5x + ) = сtg 3x, tg (5x + ) = tg ( — 3x).

На основании условия равенства тангенсов двух углов имеем:

8х = + π n; х = + ; х = (6n + 1) , nZ.

При каждом значении х из этой совокупности каждая из частей уравнения tg (5x + ) = tg ( — 3x) существует.

Уравнения sin x = sin у и cos x = cos у можно решать и с применением формул, заменив разность функций произведением.

7. Выделение полного квадрата в тригонометрических уравнениях.

sin 4 x + cos 4 x = sin 2х,

cos 6 x + sin 6 х = cos 2x,

cos 6 x + sin 6 х + sin 4 x + cos 4 x = 1 — sin 2х.

Данный метод можно применить для уравнений, содержащих следующие выражения:

sin 4 x + cos 4 x, cos 6 x sin 6 х, sin 8 х cos 8 x.

Преобразуем первое выражение:

sin 4 x + cos 4 x = sin 4 x + 2 sin 2 x cos 2 x +cos 4 x — 2 sin 2 x cos 2 x = (sin 2 x + cos 2 x) 2 — 2= 1 — sin 2 2х .

Преобразуем второе выражение:

cos 6 x + sin 6 х = (cos 2 x + sin 2 х) ( sin 4 x — sin 2 x cos 2 x +cos 4 x) = 1 — sin 2 2х — sin 2 2х = 1 — sin 2 2х.

cos 6 x — sin 6 х = (cos 2 x — sin 2 х) ( sin 4 x + sin 2 x cos 2 x +cos 4 x) = cos 2x (1 — sin 2 2х + sin 2 2х) = cos 2x (1 — sin 2 2х).

Можно упростить эти выражения и с помощью формул понижения степени.

8. Уравнения вида f(sin х + cos x, sinх cosx) = 0, f(sin х — cos x, sinх cosx) = 0.

Решить такие уравнения можно заменой sin х + cos x = t или sin х — cos x = t.

sin х + cos x = 1 + sin 2х,

6 sinх cosx + 2 sin х = 2 + 2 cos x,

3 sin 3х = 1 + 3 cos 3x — sin 6х.

После преобразования и соответствующей замены эти уравнения сводятся к квадратным. В первом уравнении, сделав замену sin х + cos x = t, получим

sin 2 x + 2 sin x cos x +cos 2 x = t 2 , 1 + sin 2х = t 2 , sin 2х = 1 — t 2 . Уравнение примет вид t = 1 + 1 — t 2 .

9. Универсальная тригонометрическая подстановка tg = t.

Эта подстановка позволяет рационально выразить все тригонометрические функции через одну переменную.

sin х = ; cos x = ; tg x = .

Значит, если tg = t, то sin х = , cos x = , tg x = . Универсальная подстановка может привести к потере корней, так как tg не существует при = + π n, значит x π + 2 π n.

ctg + sin х + tg x = 1,

sin 2х + cos x = 2 — tg x.

Решим уравнение ctg = 2 — sin х.

Пусть tg = t, тогда sin х = , а так как tg ctg = 1, то ctg = .

Получим = 2 — , 2 t 3 – 3t 2 + 2t – 1= 0, (t — 1)(2t 2 – t + 1) = 0.

Уравнение 2t 2 – t + 1 = 0 не имеет решений, значит t – 1 = 0, t = 1.

Следовательно, tg = 1, x = + 2 π n, nZ. Убедимся, что x = π + 2 π n не является решением исходного уравнения.

10 . Метод использования свойства ограниченности функции.

Суть этого метода заключается в следующем: если функции f(х) и g(х) таковы, что для всех х выполняются неравенства f(х)а и g(х) в, и дано уравнение

f(х) + g(х) = а + в, то оно равносильно системе

3 sin 5 x + 2 cos 5 x = 5 ⇔

2 sin 2 2x + 1 = cos 5x ⇔

sin 9х + cos 3x = — 2 ⇔

Решим последнее уравнение sin — cos 6x = 2.

Так как и , то имеем систему: ; ;

Покажем общее решение на тригонометрической окружности. Решение первого уравнения системы обозначим , а второго – точкой и найдем их общее решение.

Нужна ли проверка решения тригонометрического уравнения? На этот вопрос утвердительно ответить нельзя. Если тригонометрическое уравнение представляет собой целый многочлен относительно синуса и косинуса и если грамотно решать уравнение, то проверка может понадобится только для самоконтроля – для уверенности в правильности решения. Проверка, как правило, не нужна. Если следить в процессе решения уравнения за равносильностью перехода, то проверку решения можно не делать. Если же решать уравнение без учета равносильности перехода, то проверка обязательно нужна, особенно когда уравнение содержит тангенс, котангенс, дробные члены или тригонометрические функции от неизвестного, входящие под знак радикала. Не сделав в этом случае проверку, приходят к грубым ошибкам, к посторонним решениям. При решении уравнений, содержащих дробные члены, нужно следить за сокращением дробей, ссылаясь на основное свойство дроби. В этом случае мы избегаем посторонних корней и избавляем себя от проверки найденных решений.

Проблемы, возникающие при решении тригонометрических уравнений.

  1. Делим на g(х).
  2. Применяем опасные формулы.

1 сosx = sinx* sin,

Заменим левую часть уравнения по формуле 1 — сosx = 2sin 2 ,

а правую часть уравнения по формуле sinx = 2sin *cos , получим

2sin 2 = 2sin * сos *sin , разделим на 2 sin 2 обе части уравнения, получим 1 = сos , решая это уравнение, найдем корни = 2 π n, x = 4 π n, n Z.

Потеряли корни sin = 0, х = 2 π k, k Z.

Правильное решение: 2sin 2 (1 – сos ) = 0.

sin 2 = 0 или 1 – сos = 0

x = 2 π k, k ∈ Z. x = 4 π n, n ∈ Z.

Ответ: x = 2 π k, k ∈ Z, x = 4 π n, n ∈ Z.

2. Посторонние корни.

  1. Освобождаемся от знаменателя.
  2. Возводим в четную степень.

( sin4x – sin2x – сos3x + 2sinx — 1):(2sin2x — ) = 0.


источники:

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij

http://nsportal.ru/shkola/algebra/library/2012/07/24/metody-resheniya-trigonometricheskikh-uravneniy