Все типы логарифмических уравнений и их решения

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Урок-лекция по теме: «Виды логарифмических уравнений и методы их решения»

Разделы: Математика

Форма урока: лекция.

Цель урока: рассмотреть виды логарифмических уравнений и методы их решения.

I. Устный опрос по теории логарифмов.

II. Объяснение новой темы.

I. Устный опрос.

  1. Дайте определение логарифма числа.
  2. Сформулируйте свойство “Логарифм произведения”.
  3. Сформулируйте свойство “Логарифм частного”.
  4. Запишите формулу “Логарифм степени”.
  5. Запишите формулу перехода от одного основания логарифма к другому.
  6. Что называется уравнением?
  7. Что называется корнем уравнения?
  8. Что значит решить уравнение?

Ход урока

I. Рассмотрим равенство logab=c.

Это равенство устанавливает связь между тремя числами a,b,c. Сколько уравнений можно составить, используя это равенство?

1) b = x, logax = c2) a =x, logxb = c3) c = x
a>0, a =1x>0, x = 1logab = x
x = a cx c = ba – неизвестное число
x = c \/b
log4x = 3logx5 = 2logx5 = 0
x =64;x 2 = 5x 0 = 5, нет решения.
x = 5;-5
но (-5)-не корень

Уравнения №1 и №2 называются простейшими логарифмическими уравнениями. Сколько решений имеют эти простейшие уравнения? (Единственное решение при любом с)

II. Рассмотрим другие виды уравнений и способы их решения.

Виды уравнений

Способы решения

Примеры1)loga f(x) = g(x)

a>0, a 1, f(x)>0.Функционально-графический. Основан на использовании графических иллюстраций или каких-либо свойств функций (чаще всего свойств монотонности).1) lgx = 1-x

y = lgx- возрастающая на D(y)

y= 1-x — убывающая

Уравнение имеет один корень х = 1

Дома: Сколько корней имеет уравнение:

lg x = sinx (6 корней)2)logaf(x)=b

a>0, a1.По определению логарифма имеем f(x) = a b .log3(2x+1)=23)loga f(x) = logag(x)a>0,a 1.Уравнение равносильно системе:

Почему достаточно проверить одно неравенство из двух?

Например, можно опустить неравенство g(x)>0, т.к. оно вытекает из равенства f(x)=g(x) и неравенства f(x)>0

Таким образом, для решения уравнения нужно:

1) pешить уравнение f(x)=g(x);

2) из найденных решений отобрать те, которые удовлетворяют неравенству f(x)>0 ( или g(x)>0; используя более простое из этих двух неравенств), а остальные решения отбросить.log3(x 2 -3) = log32x

log2(x 2 -3x-5) = log2 (7-2x)4) loga f(x)+logag(x)=b

a>0, a1.Воспользуемся формулой logaf(x)+logag(x)=loga(f(x)g(x)). Но это преобразование может привести к появлению посторонних корней. Действительно f(x)g(x)>0, когда f(x) 0 и g(x)>0. Поэтому, уравнение равносильно системе:

I способ:

II Способ.

  1. Свести уравнение к виду loga(f(x)g(x)) = b.
  2. Решить уравнение f(x)g(x) = a b .

3) Сделать проверку, подставив найденные значения х в исходное уравнение.

lg(x+4)+lg(2x+3)= lg(1+2x)

log5(3x-11)+log5(x-27)= =3+log585) logaf(x)-logag(x)=b

a>0,a 1.I Способ. Воспользоваться равенством logaf(x)-logag(x) =loga(f(x)/g(x)).Уравнение преобразуется к виду loga(f(x)/g(x))= b.Может ли это преобразование привести к появлению посторонних корней? Решить уравнене f(x)/g(x)= a b и сделать проверку, подставив найденные значения х в исходное уравнение.

II.Способ.Уравнение равносильно системе:

Решить уравнение системы и отобрать те корни, для которых выполняются неравенства.

III.Способ. Перейти от исходного уравнения к виду logaf(x)=b+logag(x)

logaf(x)=loga(a b g(x)).Решить уравнение и сделать проверкуlg(x-1)-lg(2x-11)=lg2

Дома: lg(x 2 +19)-lg(x-8)=26) logaf(x)+logbg(x)=c

a>0, a1.При решении уравнения применяется формула logab=logcb/logca. Выбор основания должен быть таким, что бы переход к новому основанию не осложнил решения уравненя, но позволил бы избежать потери корнейlog 2xx=log 8/xx (к основанию 2) log2x/log22x = =log2x/log2(8/x); log2x(log2(8/x)-log22x)=0; x=1 , x=2;-2 — посторонний. Ответ: 1;2

1+log2(x-1)=log(x-1)47) log 2 af(x)+logaf(x)=b

a>0, a1.I Способ. Ввести новую переменную logaf(x) = t и свести уравнение к квадратному: t 2 +t=b. Решить это уравнение и сделать проверку.

IIСпособ. Найти область определения уравнения. Решить уравнение с помощью введения новой переменной. Проверить, принадлежат ли найденные значения переменной области определения уравнения.(lgx) 3 -lgx 3 +2=0

5log3x-9(log3x) 0,5 -2=08) f(x) k(x) =g(x) h(x)Найти ОДЗ уравнения. Логарифмировать обе части уравнения по выгодному основанию. Проверить принадлежность найденных значений переменной ОДЗ уравнения.

Этот способ применяется, когда невозможно уравнять основания степеней.

a>0, a 1(x+1) lg(x+1) =100(x+1)

ОДЗ: х>-1. Прологарифмируем обе части уравнения по основанию 10.

lg 2 (x+1)-lg(x+1) –2=0 – квадратное уравнение относительно lg(x+1). Решая его находим x1=99; x2= -0,9 .Оба корня удовлетворяют условию

При решении уравнений нужно руководствоваться следующими правилами:

1) решать, находя ОДЗ уравнения, и проверять принадлежность найденных значений переменной ОДЗ уравнения;

2) решать, не учитывая ОДЗ уравнения, но в конце решения сделать проверку по отбору корней;

3) преобразования, допускающие потерю корней, лучше не использовать

1) изучить лекцию;

2) решить уравнения, предложенные в лекции на дом.

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_<2>8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $\<\table \x^2-3x-5>0; \7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.


источники:

http://urok.1sept.ru/articles/311731

http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_uravneniya