Все законы столетова уравнение эйнштейна свойства фотона

Квантовая физика. Изменение физических величин в процессах. Установление соответствия

Теория к заданию 21 из ЕГЭ по физике

Гипотеза Планка о квантах

Гипотеза Планка — предположение, что атомы испускают электромагнитную энергию (свет) не непрерывно, а отдельными порциями — квантами.

Энергия каждой порции пропорциональна частоте излучения:

где $h=6.63·10^<-34>$ $Дж·с$ — постоянная Планка, $ν$ — частота света.

Постоянная Планка (квант действия) — фундаментальная физическая константа. Введена М. Планком в 1900 г. Наиболее точное значение постоянной Планка $h = 6.626176(36) · 10^<-34>$ $Дж·с$. Чаще пользуются постоянной $h=/<2π>=1.0545887(57)·10^<-34>$ $Дж·с$, также называемой постоянной Планка. Формула $p↖<→>=><√<1-<υ^2>/>$ — это вторая из простых великих формул физики (первая — формула Эйнштейна, связывающая энергию покоя тела с его массой). После открытия Планка начала развиваться квантовая теория.

Фотоны. Энергия и импульс фотона

Фотон (обозначение — $γ$) — элементарная частица, квант электромагнитного поля.

Развивая идею Планка об излучении электромагнитных волн квантами, А.Эйнштейн ввел гипотезу, согласно которой электромагнитное излучение само состоит из таких квантов, позднее названных фотонами.

Это свойство света было названо корпускулярным.

Масса покоя фотона равна нулю, следовательно, согласно СТО скорость его равна скорости света $с$, а энергия:

Из $E=hν=/<λ>=pc$ находим выражение для импульса:

Импульс фотона направлен по световому лучу. Чем больше частота, тем больше энергия и импульс фотона и тем отчетливее выражены корпускулярные свойства света.

Фотоэффект

Фотоэффект — испускание электронов веществом при поглощении им квантов электромагнитного излучения (фотонов).

Фотоэффект был открыт в 1887 г. Г. Герцем, который установил, что длина искры в разряднике увеличивается при попадании на его металлические электроды света от искры второго разрядника. Первые исследования фотоэффекта были выполнены русским ученым А. Г. Столетовым (1888 г.). Ф. Ленард и Дж. Томсон (1889 г.) доказали, что при фотоэффекте испускаются электроны.

Опыты Столетова. Законы фооэффекта

Схема опытов и прибор Столетова по наблюдению фотоэффекта представлены на рисунке. Здесь $С$ — два металлических диска, установленных параллельно друг другу (один — латунная или железная металлическая сетка, второй диск — сплошной). Диски соединены между собой проволокой, в которую введены гальваническая батарея $В$ и чувствительный гальванометр с большим сопротивлением ($5212$ Ом), $А$ — источник света (лампа с вольтовой дугой). Таким образом, две металлические пластины представляют собой конденсатор, причем металлическая сетка является положительной обкладкой конденсатора. Свет от дуги $А$ через сетку попадает на отрицательно заряженную сплошную металлическую пластину. Из опытов Столетова следовало, что фототок через гальванометр сильнее всего растет при освещении ультрафиолетовыми лучами, сила фототока пропорциональна интенсивности освещения, и под действием света освобождаются только отрицательные заряды.

При изучении фотоэффекта строят зависимость тока $I$ от напряжения $U$, подаваемого к электродам, один из которых (исследуемый фотокатод) освещается светом. Из полученной зависимости $I(U)$ следует, что при $U=0$ ток не равен нулю, а для того, чтобы ток стал равным нулю, необходимо подать некоторое напряжение обратной полярности (к освещенному электроду «+», к неосвещенному — «—»), которое называется задерживающим напряжением $U_з$ и определяется максимальной кинетической энергией вылетающих электронов: $/<2>=eU_з$.

В процессе исследования фотоэффекта были установлены следующие закономерности.

  1. Количество электронов, вырываемых светом с поверхности металла за $1$ с, прямо пропорционально поглощаемой за это время энергии световой волны.
  2. Скорость электронов, вылетающих из тела при фотоэффекте, определяется его частотой $ν$ и не зависит от интенсивности.
  3. Для каждого вещества существует предельная наименьшая частота света $ν_$ (красная граница фотоэффекта), при которой возможен фотоэффект. Излучение с частотой $ν E_1$. Интенсивность поглощенного излучения пропорциональна концентрации $n_1$ атомов, находящихся в основном состоянии.

2. Спонтанное излучение. В отсутствие внешних полей или столкновений с другими частицами электрон, находящийся в возбужденном состоянии, через время порядка $10^<-8>-10^<-7>$
с спонтанно (самопроизвольно) возвращается в основное состояние, излучая фотон.

Спонтанное излучение — это излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое.

Спонтанное излучение различных атомов происходит некогерентно, т. к. каждый атом начинает и заканчивает излучать независимо от других.

3. Индуцированное излучение. В 1917 г. Эйнштейн предсказал, что возбужденный атом может излучать под действием падающего на него света.

Индуцированное (вынужденное) излучение — излучение атома, возникающее при переходе на более низкий энергетический уровень под действием внешнего электромагнитного излучения.

Интенсивность индуцированного излучения пропорциональна концентрации щ атомов, находящихся в возбужденном состоянии. При этом световая волна, возникающая при индуцированном излучении, имеет ту же частоту, поляризацию, фазу и направление распространения, что и падающая на атом волна. Это означает, что интенсивность падающего излучения увеличивается, т. е. возникает оптическое усиление.

Принцип действия лазера

В 1939 г. российский физик В. А. Фабрикант наблюдал экспериментально усиление электромагнитных волн (оптическое усиление) в результате процесса индуцированного излучения. Российские ученые Н. Г. Басов и А. М. Прохоров и американский физик Ч. Таунс, создавшие в 1954 г. квантовый генератор излучения, работавший в сантиметровом диапазоне, были удостоены в 1964 г. Нобелевской премии по физике. Первый лазер, работающий на кристалле рубина в видимом диапазоне, был создан в 1960 г. американским физиком Т. Мейманом.

Усиление излучения, падающего на среду, будет происходить тогда, когда число частиц на возбужденном уровне $n_2$ превысит число частиц на основном уровне энергии: $n_2 > n_1$. Такое состояние системы называется инверсной населенностью. В состоянии термодинамического равновесия, когда система занимает основное состояние с наименьшей энергией $Е_1$, т. е. когда $n_1 > n_2$, усиления света не будет.

Инверсная населенность энергетических уровней — неравновесное состояние среды, при котором концентрация атомов в возбужденном состоянии больше, чем концентрация атомов в основном состоянии.

Однако спонтанные переходы препятствуют накоплению атомов в возбужденном состоянии. Этим можно пренебречь, если возбужденное состояние метастабильно.

Метастабильным называется возбужденное состояние электрона в атоме, в котором он может находиться гораздо дольше (например, $10^<-3>$ с), чем в обычном возбужденном состоянии ($10^<-8>$ с).

На этом основан принцип действия рубинового лазера. Рубин, используемый в качестве активного элемента в лазере, представляет собой монокристалл $А1_2O_3$, в котором часть ионов алюминия замещена ионами $Сг^<3+>$.

С помощью лампы-вспышки (оптической накачки) ионы хрома переводятся из основного состояния $Е_1$ в возбужденное — $Е_3$. Через $10^<-8>$ с ионы, передавая часть энергии кристаллической решетке, переходят из возбужденного состояния $Е_3$ в метастабильное состояние $Е_2 n_1$) этого уровня. Случайный фотон с энергией $hν=E_2-E_1$ может вызвать лавину индуцированных когерентных фотонов. Индуцированное излучение, распространяющееся вдоль оси цилиндрического монокристалла рубина, многократно отражается от его торцов и быстро усиливается.

Один из торцов рубинового стержня делают зеркальным, а другой — частично прозрачным. Через него выходит мощный импульс когерентного монохроматического излучения красного цвета с длиной волны $694.3$ нм.

В настоящее время существует много различных типов и конструкций лазеров.

Лазерное излучение обладает следующими особенностями:

  1. исключительной монохроматичностью и когерентностью;
  2. пучок света лазера имеет очень малый угол расхождения (около $10^<-5>$рад);
  3. лазер — наиболее мощный искусственный источник света. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.

Состав ядра. Нуклонная модель Гейзенберга-Иваненко

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения а-частиц через вещество. Оказалось, что почти вся масса атома ($99.95%$) сосредоточена в ядре. Размер атомного ядра имеет порядок величины $10^<-13>-10^<-12>$ см, что в $10 000$ раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода, выбитых $α$-частицами из ядер других элементов (1919—1920 гг.), привели ученого к представлению о протоне. Термин протон был введен в начале 20-х гг XX ст.

Протон (от protos — первый, символ $p$) — стабильная элементарная частица, ядро атома водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона $e=1.6·10^<-19>$ Кл. Масса протона в $1836$ раз больше массы электрона. Масса покоя протона $m_p=1.6726231·10^<-27>кг=1.007276470 а.е.м.$

Второй частицей, входящей в состав ядра, является нейтрон.

Нейтрон (от лат. neuter — ни тот, ни другой, символ $n$) — это элементарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в $1839$ раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона $m_n=1.6749286·10^<-27>кг=1.0008664902 а.е.м.$ и превосходит массу протона на $2.5$ массы электрона. Нейтрон, наряду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия $α$-частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало преграду из свинцовой пластины толщиной $10-20$ см) усиливало свое действие при прохождении через парафиновую пластину. Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это $γ$-кванты. Большая проникающая способность новых частиц, названных нейтронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании $α$-частиц в ядра бериллия происходит следующая реакция:

Здесь $↙<0>↖<1>n$ — символ нейтрона; заряд его равен нулю, а относительная атомная масса приблизительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время $

15$ мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протоннонейтронную (нуклонную) модель ядра. Согласно этой модели, ядро состоит из протонов и нейтронов. Число протонов $Z$ совпадает с порядковым номером элемента в таблице Д. И. Менделеева.

Заряд ядра $Q$ определяется числом протонов $Z$, входящих в состав ядра, и кратен абсолютной величине заряда электрона $e$:

Число $Z$ называется зарядовым числом ядра или атомным номером.

Массовым числом ядра $А$ называется общее число нуклонов, т. е. протонов и нейтронов, содержащихся в нем. Число нейтронов в ядре обозначается буквой $N$. Таким образом, массовое число равно:

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов.

Изотопы (от греч. isos — равный, одинаковый и topos — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов ($Z$) и различное число нейтронов ($N$).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного элемента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами $Z$ и $N$. Общее обозначение нуклидов имеет вид $↙↖X_N$, где $X$ — символ химического элемента, $A=Z+N$ — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и произошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (и почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемента определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода $↖<1>H$ — протий, $↖<2>H$ — дейтерий, $↖<3>H$ — тритий столь сильно отличаются по массе, что и их физические и химические свойства различны. Дейтерий стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси ($1:4500$) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода. Она при нормальном атмосферном давлении кипит при $101.2°$С и замерзает при $+3.8°$С. Тритий $β$-радиоактивен с периодом полураспада около $12$ лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактивные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами $235$ и $238$. Изотоп $↙<92>↖<235>U$ составляет всего $<1>/<140>$ часть от более распространенного $↙<92>↖<238>U$.

Энергия связи нуклонов в ядре. Ядерные силы

Поскольку протоны в ядре имеют одинаковый положительный заряд, они отталкиваются. Для того чтобы удержать их вместе, должны существовать силы, намного превышающие силы электрического и гравитационного взаимодействия. Эти силы называются ядерными силами. Они в $100$ раз превосходят электрические (кулоновские) силы. Это самые мощные силы из всех, которыми располагает природа. Поэтому взаимодействие ядерных частиц относят к сильным взаимодействиям — особому типу взаимодействия, присущему большинству элементарных частиц наряду с электромагнитными взаимодействиями. Ядерные силы заметно проявляются лишь на расстояниях порядка $10^<-13>-10^<-12>$ см, равных по порядку величины размерам ядра, что показали опыты Резерфорда по рассеянию $α$-частиц ядрами.

Устойчивость атомного ядра характеризуется энергией связи ($Е_<св>$). Энергия связи — это энергия, которую надо затратить, чтобы расщепить ядро. Ее принято выражать в мегаэлектронвольтах (МэВ) ($1 МэВ = 1.6·10^<-13>Дж$).

Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основании закона сохранения энергии можно также утверждать, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика. Определить ее можно, применяя соотношение Эйнштейна между массой и энергией: $E=mc^2$.

Удельной энергией связи называют энергию связи, приходящуюся на один нуклон ядра. Ее определяют экспериментально. Зависимость $Е_<уд>$ от массового числа $А$ приведена на рисунке. Как видно из рисунка, удельная энергия связи примерно постоянна (не считая самых легких ядер) и равна $8$ МэВ/нуклон. Слабый максимум ($8.6$ МэВ) приходится на элементы с массовыми числами от $50$ до $60$, т. е. на железо и близкие к нему по порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

У тяжелых ядер удельная энергия связи уменьшается за счет растущей с увеличением $Z$ кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро.

Дефект массы

Точнейшие измерения показывают, что масса покоя ядра $М_я$ всегда меньше суммы масс покоя составляющих ее протонов и нейтронов: $М_я 100$.

Деление ядер урана было обнаружено в 1939 г. Ганом и Штрасманом, которые однозначно доказали, что при бомбардировке нейтронами ядер урана $U$ появляются радиоактивные ядра с массами и зарядами, примерно в два раза меньшими, чем масса и заряд ядра $U$. В том же году Л. Мейтнер и О. Фриш ввели термин «деление ядер» и отметили, что при этом выделяется огромная энергия, а Ф. Жолио-Кюри и Э. Ферми одновременно обнаружили, что при делении происходит испускание нескольких нейтронов (нейтроны деления). На основании этого была выдвинута идея самоподдерживающейся цепной реакции деления и использования деления ядер в качестве источника энергии. Основой современной ядерной энергетики служит деление ядер $↙<92>↖<235>U$ и $↖<239>Pu$ поддействиемнейтронов.

Деление ядра возможно благодаря тому, что масса покоя тяжелого ядра больше суммы масс покоя осколков, возникающих при делении. Такой процесс энергетически выгоден.

Механизм деления ядра объясняется на основе капельной модели, согласно которой сгусток нуклонов напоминает капельку заряженной жидкости. Ядро удерживают от распада ядерные силы притяжения, большие, чем силы кулоновского отталкивания, действующие между протонами и стремящиеся разорвать ядро.

Ядро $↙<92>↖<235>U$ имеет форму шара. После поглощения нейтрона оно возбуждается и деформируется, приобретая вытянутую форму, и растягивается до тех пор, пока силы отталкивания между половинками вытянутого ядра не станут больше сил притяжения, действующих в перешейке. После этого ядро разрывается на две части. Осколки под действием кулоновских сил отталкивания разлетаются со скоростью, равной $<1>/<30>$ скорости света.

Испускание нейтронов в процессе деления, о котором говорилось выше, объясняется тем, что относительное число нейтронов (по отношению к числу протонов) в ядре растет с увеличением атомного номера, и для образовавшихся при делении осколков число нейтронов оказывается большим, чем это допустимо для ядер атомов с меньшими номерами. г

Деление обычно происходит на осколки неравной массы. Эти осколки радиоактивны. После серии $β$-распадов в конце концов получаются стабильные ионы.

Кроме вынужденного, описанного выше, существует и спонтанное деление ядер урана, открытое в 1940 г. советскими физиками Г. Н. Флеровым и К. А. Петржаком. Период полураспада для спонтанного деления равен $10^<16>$ лет, что в два миллиона раз больше периода полураспада при $α$-распаде урана.

Синтез ядер осуществляется в термоядерных реакциях. Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре. Выделяющаяся при слиянии (синтезе) энергия оказывается наибольшей при синтезе легких элементов, обладающих минимальной энергией связи. При соединении двух легких ядер, например, дейтерия и трития, образуется более тяжелое яро гелия с большей энергией связи:

При таком процессе ядерного синтеза выделяется значительная энергия ($17.6$ Мэв), равная разности энергий связи тяжелого ядра $↙<2>↖<4>Не$ и двух легких ядер $↙<2>↖<1>Н$ и $↙<1>↖<3>Н$. Образующийся при реакциях нейтрон приобретает $70%$ этой энергии. Сравнение энергии, приходящейся на один нуклон в реакциях ядерного деления ($0.9$ Мэв) и синтеза ($17.6$ Мэв), показывает, что реакция синтеза легких ядер энергетически более выгодна, чем реакция деления тяжелых.

Слияние ядер происходит под действием сил ядерного притяжения, поэтому они должны сблизиться до расстояний, меньших $10^<-14>$ м, на которых действуют ядерные силы. Этому сближению препятствует кулоновское отталкивание положительно заряженных ядер. Оно может быть преодолено только за счет большой кинетической энергии ядер, превышающей энергию их кулоновского отталкивания. Соответствующие расчеты показывают, что кинетическая энергия ядер, необходимая для реакции синтеза, может быть достигнута при температурах порядка сотен миллионов градусов, поэтому эти реакции называются термоядерными.

Термоядерный синтез — реакция, в которой при высокой температуре, большей $107$ К, из легких ядер синтезируются более тяжелые.

Термоядерный синтез — источник энергии всех звезд, в том числе, и Солнца.

Основным процессом, при котором происходит освобождение термоядерной энергии в звездах, является превращение водорода в гелий. За счет дефекта массы в этой реакции масса Солнца уменьшается каждую секунду на $4$ млн тонн.

Большую кинетическую энергию, необходимую для термоядерного синтеза, ядра водорода получают в результате сильного гравитационного притяжения к центру звезды. Затем при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют решающую роль в эволюции химического состава вещества во Вселенной. Все эти реакции сопровождаются выделением энергии, излучаемой звездами в виде света на протяжении миллиардов лет.

Осуществление управляемого термоядерного синтеза предоставило бы человечеству новый, практически неисчерпаемый источник энергии. И дейтерий, и тритий, необходимые для его осуществления, вполне доступны. Первый содержится в воде морей и океанов (в количестве, достаточном для использования в течение миллиона лет), второй может быть получен в ядерном реакторе при облучении жидкого лития (запасы которого огромны) нейтронами:

Одним из важнейших преимуществ управляемого термоядерного синтеза является отсутствие радиоактивных отходов при его осуществлении (в отличие от реакций деления тяжелых ядер урана).

Главным препятствием на пути осуществления управляемого термоядерного синтеза является невозможность удержания высокотемпературной плазмы с помощью сильных магнитных полей в течение $0.1-1$ с. Однако существует уверенность в том, что рано или поздно термоядерные реакторы будут созданы.

Пока же удалось осуществить лишь неуправляемую реакцию синтеза взрывного типа в водородной бомбе.

Цепные ядерные реакции

Ядерные цепные реакции — это ядерные реакции, в которых частицы, вызывающие их, образуются и как продукты этих реакций. Такой реакцией является деление урана и некоторых трансурановых элементов (например, $↖<239>Рu$) под действием нейтронов. Впервые она была осуществлена Э. Ферми в 1942 г. После открытия деления ядер У. Зинн, Л. Силард и Г. Н. Флеров показали, что при делении ядра урана $U$ вылетает больше одного нейтрона: $n+U→A+B+ν$. Здесь $А$ и $В$ — осколки деления с массовыми числами $А$ от $90$ до $150$, $ν$ — число вторичных нейтронов.

Коэффициент размножения нейтронов. Для течения цепной реакции необходимо, чтобы среднее число освобожденных нейтронов в данной массе урана не уменьшалось со временем, или чтобы коэффициент размножения нейтронов $k$ был больше или равен единице.

Коэффициентом размножения нейтронов называют отношение числа нейтронов в каком-либо поколении к числу нейтронов предшествующего поколения. Под сменой поколений понимают деление ядер, при котором поглощаются нейтроны старого поколения и рождаются новые нейтроны.

Если $k≥1$, то число нейтронов увеличивается с течением времени или остается постоянным, и цепная реакция идет. При $k

Фотоэффект. Фотоны

В 1887 году Г. Герцем был открыт фотоэлектрический эффект, а продолжить его исследования довелось А.Г. Столетову. Ф. Леонард в 1900 году серьезно занялся данным проектом. К тому времени был открыт электрон. Это говорило о том, что фотоэффект состоял в вырывании электронов из вещества под действием падающего на него света.

Данное исследование законов Столетова изображено на рисунке 5 . 2 . 1 .

Рисунок 5 . 2 . 1 . Схема экспериментальной установки для изучения фотоэффекта.

В лабораторных условиях применили стеклянный вакуумный баллон с двумя металлическими электродами с очищенной поверхностью. К ним прикладывали напряжение U с возможностью изменения полярности с помощью ключа. Катод освещали монохроматическим светом с длиной волны λ через кварцевое окошко. Так как световой поток оставался неизменным, то зависимость силы тока I от напряжения ослабевала. Рисунок 5 . 2 . 2 . наглядно демонстрирует кривые зависимости при интенсивном свете, попадающем на катод.

Рисунок 5 . 2 . 2 . Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. I н 1 и I н 2 – токи насыщения, U з – запирающий потенциал.

По графику видно, что при подаче большого напряжения фототок анода А достигает насыщения, потому как при вырывании светом из катода они в состоянии достичь его.

Ток насыщения. Закономерности фотоэффекта

Ток насыщения I н прямо пропорционален интенсивности падающего света.

При наличии отрицательного напряжения на аноде, электрическое поле, находящееся между катодом и анодом, тормозится электронами. К аноду могут добраться электроны, у которых кинетическая энергия превышает значение | e U | . При наличии напряжения меньше, чем – U з , происходит прекращение фототока. После измерения – U з определяется максимальная кинетическая энергия фотоэлектронов:

m υ 2 2 m a x = e U 3 .

Из формулы видно, что оно не зависит от интенсивности падающего света. После глубоких исследований стало ясно, что при возрастании запирающего потенциала происходит линейное увеличение частоты света ν .

Рисунок 5 . 2 . 3 . Зависимость запирающего потенциала U з от частоты ν падающего света.

После многочисленных экспериментов были установлены закономерности формул фотоэффекта:

  1. При увеличении частоты света ν происходит возрастание кинетической энергии, независящей от ее интенсивности.
  2. Наименьшей частотой ν m i n с внешним фотоэффектом называют красную границу фотоэффекта каждого вещества.
  3. Количество фотоэлектронов за 1 с вырывания из катода прямо пропорционально интенсивности света.
  4. Фотоэффект возникает после освещения катода с условием, что ν > ν m i n .

Данные закономерности не соответствовали представлениям классической физики о взаимодействии света с веществом. Исходя из волновых представлений, взаимодействие световой волны с электроном должно действовать по принципу постепенного накапливания энергии. Чтобы он смог вылететь из катода, необходимо иметь достаточное количество энергии, накапливаемой за определенный промежуток времени, не зависящий от интенсивности света.

Появление фотоэлектронов происходит сразу после освещения катода. Данная модель не давала четкого представления нахождения красной границы фотоэффекта. Волновая теория света не могла дать объяснение независимости энергии фотоэлектронов от интенсивности светового потока и пропорциональности максимальной кинетической энергии частоты света. Поэтому электромагнитная теория была не способна объяснить эти изменения.

В 1905 году А. Эйнштейн дает теоретическое объяснение наблюдаемых закономерностей фотоэффекта, основываясь на гипотезе М. Планка.

Постоянная Планка. Уравнение Эйнштейна

Излучение и поглощение света происходит определенными порциями, где она определяется формулой E = h ν , h принято называть постоянной Планка.

Основной шаг в развитии квантовых представлений относится к Эйнштейну:

Свет обладает прерывистой структурой. Электромагнитная волна состоит из порций, называемых, кварками, спустя время которые зафиксировали как фотоны.

После взаимодействия с веществом фотон передает свою энергию h ν одному электрону, одна часть которой рассеивается при столкновениях с атомами, а другая затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого ему необходимо совершить работу выхода А , зависящую от свойств материала катода.

Наибольшую кинетическую энергию, вылетевшую из катода фотоэлектроном, определяют законом сохранения энергии:

m ν 2 2 m a x = e U e = h ν — A .

Формула получила название уравнения Эйнштейна для фотоэффекта.

Благодаря ему, закономерности внешнего явления фотоэффекта могут быть объяснены.

Линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта следуют из данного выражения.

Общее количество фотоэлектронов, которые покидают поверхность катода в течение 1 с , пропорционально числу фотонов, падающих на поверхность. Можно сделать вывод, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

По уравнению фотоэффекта Эйнштейна тангенс угла наклона прямой, выражающий зависимость запирающего потенциала U з от частоты ν , равняется отношению постоянной Планка h к заряду электрона e :

Формула позволяет вычислить значение постоянной Планка.

Р. Милликенн проводил измерения в 1914 году, после чего смог определить работу выхода А :

A = h ν m i n = h c λ к р ,

где c – скорость света, λ к р – длина волны, которая соответствует красной границе фотоэффекта.

Большинство металлов имеет работу выхода А и составляет несколько электрон-вольт ( 1 э В = 1 , 602 · 10 – 19 Д ж ) .

Квантовая физика использует электрон-вольт как энергетическую единицу измерения. Тогда значение постоянной Планка равняется

h = 4 , 136 · 10 — 15 э В · с .

Наименьшая работа выхода наблюдается у щелочных элементов. Натрий при A = 1 , 9 э В соответствует красной границе фотоэффекта λ к р ≈ 680 н м . Такие соединения применяют для создания катодов в фотоэлементах, используемых для регистрации видимого света.

Законы фотоэффекта говорят о том, что при пропускании и поглощении свет ведет себя подобно потоку частиц, называемых фотонами или световыми квантами.

Энергия фотонов записывается в виде формулы E = h ν .

При движении в вакууме фотон обладает скоростью с , а его масса m = 0 . Общее соотношение теории относительности, связывающее энергию, импульс и массу любой частицы, записывается как E 2 = m 2 c 4 + p 2 c 2 .

Отсюда следует, что фотон обладает импульсом, значит:

Можно сделать вывод, что учение о свете вернулось к представлениям о световых частицах – корпускулах. Но это не расценивается как возврат к корпускулярной теории Ньютона. В XX было известно о двойственной природе света. Когда он распространялся, то проявлялись его волновые свойства (интерференция, дифракция, поляризация), при его взаимодействии с веществом – корпускулярные, то есть явление фотоэффекта. Это и получило название корпускулярно-волнового дуализма.

Спустя время, данная теория была подтверждена у других элементарных частиц. Классическая физика не дает наглядную модель сочетаний волновых и корпускулярных свойств микрообъектов. Их движениями управляют законы квантовой механики. В основе этой науки лежит теория абсолютно черного тела, доказанная М. Планком, и квантовая, предложенная Эйнштейном.

Рисунок 5 . 2 . 4 . Модель фотоэффекта

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 22. Фотоэффект

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Глоссарий по теме:

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения — некоторое предельное значение силы фототока.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10 -34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin — частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где — максимальная кинетическая энергия электронов;

Е – заряд электрона;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.


источники:

http://zaochnik.com/spravochnik/fizika/kvantovaja-fizika/fotoeffekt-fotony/

http://resh.edu.ru/subject/lesson/4917/conspect/