Вторая ступень гидролиза na3po4 соответствует уравнению реакции

Гидролиз

Темы кодификатора ЕГЭ: Гидролиз солей. Среда водных растворов: кислая, основная и щелочная.

Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

Гидролиз солей может протекать:

обратимо : только небольшая часть частиц исходного вещества гидролизуется.

необратимо : практически все частицы исходного вещества гидролизуются.

Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.

Обратимый гидролиз солей

Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:

1. Соли, образованные сильным основанием и слабой кислотой , гидролизуются ПО АНИОНУ .

CH3COONa + HOH ↔ CH3COOH + NaOH

CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —

сокращенное ионное уравнение:

CH3COO — + HOH ↔ CH3COOH + OH —

Таким образом, при гидролизе таких солей в растворе образуется небольшой избыток гидроксид-ионов OH — . Водородный показатель такого раствора рН>7 .

Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:

CO3 2- + HOH ↔ HCO3 2- + OH —

или в молекулярной форме:

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

2. Соли, образованные слабым основанием и сильной кислотой , гидролизуются ПО КАТИОНУ . Пример такой соли: NH4Cl, FeCl3, Al2(SO4)3 Уравнение гидролиза:

или в молекулярной форме:

При этом катион слабого основания притягивает гидроксид-ионы из воды, а в растворе возникает избыток ионов Н + . Водородный показатель такого раствора рН .

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:

Fe 3+ + HOH ↔ FeOH 2+ + H +

FeCl3 + HOH ↔ FeOHCl2 + H Cl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H +

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +

Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

3. Соли, образованные слабым основанием и слабой кислотой , гидролизуются И ПО КАТИОНУ, И ПО АНИОНУ .

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. В большинстве случаев реакция раствора будет примерно нейтральной, рН ≅ 7 . Точное значение рН зависит от относительной силы основания и кислоты.

4. Гидролиз солей, образованных сильным основанием и сильной кислотой , в водных растворах НЕ ИДЕТ .

Сведем вышеописанную информацию в общую таблицу:

Необратимый гидролиз

Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.

Варианты необратимого гидролиза:

  1. Гидролиз, в который вступают растворимые соли 2х-валентных металлов (Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.) с сильным ионизирующим полем (слабые основания) и растворимые карбонаты/гидрокарбонаты. При этом образуются нерастворимые основные соли (гидроксокарбонаты):

! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:

МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).

  1. Взаимный гидролиз , протекающий при смешивании двух солей, гидролизованных по катиону и по аниону. Продукты гидролиза по второй ступени усиливают гидролиз по первой ступени и наоборот. Поэтому в таких процессах образуются не просто продукты обменной реакции, а продукты гидролиза (совместный или взаимный гидролиз). Соли металлов со степенью окисления +3 (Al 3+ , Cr 3+ ) и соли летучих кислот (карбонаты, сульфиды, сульфиты) при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ (H2S, SO2, CO2):

Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:

! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:

2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)

При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.

Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.

3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!

Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.

Галогенангидриды некоторых кислот:

КислотаГалогенангидриды
H2SO4SO2Cl2
H2SO3SOCl2
H2CO3COCl2
H3PO4POCl3, PCl5

Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).

  1. Необратимый гидролиз бинарных соединений, образованных металлом и неметаллом:
  • сульфиды трехвалентных металлов вводе необратимо гидролизуются до сероводорода и и гидроксида металла:

при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:

  • гидролиз карбидов приводит к образованию гидроксида металла в водной среде, соли металла в кислой де и соответствующего углеводорода — метана, ацетилена или пропина:
  1. Некоторые соли необратимо гидролизуются с образованием оксосолей :

BiCl3 + H2O = BiOCl + 2HCl,

SbCl3 + H2O = SbOCl + 2HCl.

Алюмокалиевые квасцы:

Количественно гидролиз характеризуется величиной, называемой степенью гидролиза .

Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.

Факторы, влияющие на степень гидролиза:

1. Температура

Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.

Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:

2. Концентрация соли

Чем меньше концентрация соли, тем выше степень ее гидролиза.

Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:

По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.

3. Добавление к реакционной смеси кислоты или щелочи

Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.

Гидролиз ортофосфата натрия

Na3PO4 — соль образованная сильным основанием и слабой кислотой, поэтому реакция гидролиза протекает по аниону.

Первая стадия (ступень) гидролиза

Полное ионное уравнение
3Na + + PO4 3- + HOH ⇄ 2Na + + HPO4 2- + Na + + OH —

Сокращенное (краткое) ионное уравнение
PO4 3- + HOH ⇄ HPO4 2- + OH —

Вторая стадия (ступень) гидролиза

Полное ионное уравнение
2Na + + HPO4 2- + HOH ⇄ Na + + H2PO4 — + Na + + OH —

Сокращенное (краткое) ионное уравнение
HPO4 2- + HOH ⇄ H2PO4 — + OH —

Соли фосфорной кислоты H3PO4

H3PO4 образует три ряда солей:

Как видно из реакций, приведенных выше, та или иная соль получается в зависимости от соотношения молярных масс реагирующих кислот и щелочей.

Средние соли фосфорной кислоты (фосфаты) нерастворимы в воде, за исключением аммония и фосфатов щелочных металлов. Кислые соли, наоборот, хорошо растворяются в воде, лучше всего — дигидрофосфаты.

Отличительной особенностью солей фосфорной кислоты является принципиально разный характер среды, образующейся в водных растворах средних и кислых солей в результате их гидролиза.

Гидролиз фосфата натрия Na3PO4

Основная ступень гидролиза фосфата натрия выражается следующей реакцией:
Na3 PO4 3- + H2O ↔ Na2 HPO4 2- +Na OH —

Образующиеся ионы HPO4 2- очень слабо диссоциируют (см. выше диссоциацию фосфорной кислоты п.3), практически не подкисляя раствор, в таких условиях кислотность раствора определяется только гидроксид-ионами OH — , по этой причине водные растворы средних фосфатов имеют сильно щелочную среду.

Гидролиз гидрофосфата натрия Na2HPO4

Основная ступень гидролиза гидрофосфата натрия выражается следующей реакцией:
Na2 HPO4 2- + H2O ↔ Na H2PO4 — +Na OH —

Образующиеся ионы H2PO4 2- диссоциируют достаточно хорошо (см. выше диссоциацию фосфорной кислоты п.2), нейтрализуя значительную часть гидроксид-ионов OH — , по этой причине водные растворы гидрофосфатов имеют слабощелочную среду.

Гидролиз дигидрофосфата натрия NaH2PO4

В растворах дигидрофосфатов наряду с гидролизом идет процесс диссоциации дигидрофосфат-ионов:
Na H2PO4 — + H2O ↔ H3PO4 +Na OH —
H2PO4 — ↔ H + +HPO4 2-

Примечательно, что второй процесс превалирует над первым, по этой причине, все гидроксид-ионы OH — , являющиеся продуктом гидролиза, полностью нейтрализуются продуктами диссоциации — катионами водорода H + , которых присутствует в растворе в избытке, что и объясняет слабокислый характер среды растворов дигидрофосфатов.

Применение фосфатов

Соли фосфорной кислоты находят широчайшее применение в современной стоматологии и ортопедии, в бытовой химии:

Апатит Ca5(OH)(PO4)3 — важнейший компонент зубов и костей. Зубной кариес является результатом химической реакции фосфата с кислой средой в ротовой полости (кислоты содержатся в пище, а также образуются в результате жизнедеятельности микроорганизмов, находящихся во рту).

Фтор, входящий в состав зубной пасты, способствует образованию на зубах тонкого слоя фторапатита, более устойчивого к негативному действию кислот:
Ca5(OH)(PO4)3+F → Ca5F(PO4)3+OH —

Современные пломбировочные материалы, применяющиеся в стоматологии, содержат труднорастворимые фосфаты алюминия и цинка (AlPO4, Zn3(PO4)2), которые являются очень устойчивыми к действию кислот.

В последнее время соли фосфорной кислоты стали использоваться в ортопедии для восстановления сломанных костей — специальная паста, в состав которой входят дигидрофосфат кальция, фосфат натрия, фосфорит вводится в место перелома кости, формируя в течение нескольких минут сломанный участок — по мере сращения кости искусственная кость замещается естественной костной тканью.

Натриевая соль трифосфорной кислоты нашла применение в моющих средствах, которые используются для смягчения жесткой воды — ионы магния и кальция связываются трифосфорной кислотой, и не взаимодействуют с анионами мыла.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе


источники:

http://chemer.ru/services/hydrolysis/salts/Na3PO4

http://prosto-o-slognom.ru/chimia/505_soli_fosfora.html