Выберите уравнения в которых неизвестное является целым

Основные методы решения уравнений в целых числах

Введение

Существует множество математических задач, ответами к которым служат одно или несколько целых чисел. В качестве примера можно привести четыре классические задачи, решаемые в целых числах – задача о взвешивании, задача о разбиении числа, задача о размене и задача о четырёх квадратах. Стоит отметить, что, несмотря на достаточно простую формулировку этих задач, решаются они весьма сложно, с применением аппарата математического анализа и комбинаторики. Идеи решения первых двух задач принадлежат швейцарскому математику Леонарду Эйлеру (1707–1783). Однако наиболее часто можно встретить задачи, в которых предлагается решить уравнение в целых (или в натуральных) числах. Некоторые из таких уравнений довольно легко решаются методом подбора, но при этом возникает серьёзная проблема – необходимо доказать, что все решения данного уравнения исчерпываются подобранными (то есть решений, отличных от подобранных, не существует). Для этого могут потребоваться самые разнообразные приёмы, как стандартные, так и искусственные. Анализ дополнительной математической литературы показывает, что подобные задания достаточно часто встречаются в олимпиадах по математике разных лет и различных уровней, а также в задании 19 ЕГЭ по математике (профильный уровень). В то же время в школьном курсе математики данная тема практически не рассматривается, поэтому школьники, участвуя в математических олимпиадах или сдавая профильный ЕГЭ по математике, обычно сталкиваются со значительными трудностями при выполнении подобного рода заданий. В связи с этим целесообразно выделить систему основных методов решения уравнений в целых числах, тем более что в изученной математической литературе этот вопрос явно не оговаривается. Описанная проблема определила цель данной работы: выделить основные методы решения уравнений в целых числах. Для достижения поставленной цели необходимо было решить следующие задачи:

1) Проанализировать олимпиадные материалы, а также материалы профильного ЕГЭ по математике;

2) Обозначить методы решения уравнений в целых числах и выделить преобладающие;

3) Полученные результаты проиллюстрировать примерами;

4) Составить несколько тренировочных заданий по данной теме;

5) Применяя разработанные задания, определить степень готовности учащихся девятых классов МБОУ СОШ №59 к решению подобного рода задач и сделать практические выводы.

Основная часть

Анализ разнообразной математической литературы показывает, что среди методов решения уравнений в целых числах в качестве основных можно выделить следующие:

  1. Представление уравнения в виде произведения нескольких множителей, равного некоторому целому числу;
  2. Представление уравнения в виде суммы квадратов нескольких слагаемых, равной некоторому целому числу;
  3. Использование свойств делимости, факториалов и точных квадратов;
  4. Использование Малой и Великой теорем Ферма;
  5. Метод бесконечного спуска;
  6. Выражение одной неизвестной через другую;
  7. Решение уравнения как квадратного относительно одной из неизвестных;
  8. Рассмотрение остатков от деления обеих частей уравнения на некоторое число.

Сразу же нужно оговорить, что мы понимаем под основными методами решения уравнений. Основными будем называть наиболее часто применяющиеся методы, что, конечно, не исключает возможности периодического применения новых «неожиданных» приёмов. Кроме того, причём в подавляющем большинстве случаев, применяют их различные сочетания, то есть проводят комбинирование нескольких методов.
В качестве примера сочетания методов рассмотрим уравнение, предлагавшееся на ЕГЭ по математике в 2013 году (задание С6).

Задача. Решить в натуральных числах уравнение n! + 5n + 13 = k 2 .

Решение. Заметим, что оканчивается нулём при n > 4. Далее, при любых n ∈ N оканчивается либо цифрой 0, либо цифрой 5. Следовательно, при n > 4 левая часть уравнения оканчивается либо цифрой 3, либо цифрой 8. Но она же равна точному квадрату, который не может оканчиваться этими цифрами. Поэтому нужно перебрать только четыре варианта: n = 1, n = 2, n = 3, n = 4.

Значит, уравнение имеет единственное натуральное решение n = 2, k = 5.

В этой задаче использовались свойства точных квадратов, свойства факториалов, и остатки от деления обеих частей уравнения на 10.

Теперь приведём комплекс авторских задач.

Задача 1. Решить в целых числах уравнение n 2 — 4y! = 3.

Решение. Сначала перепишем исходное уравнение в виде n 2 = 4y! + 3. Если посмотреть на это соотношение с точки зрения теоремы о делении с остатком, то можно заметить, что точный квадрат, стоящий в левой части уравнения, даёт при делении на 4 остаток 3, что невозможно. Действительно, любое целое число представимо в одном из следующих четырёх видов:

Таким образом, точный квадрат при делении на 4 даёт в остатке либо 0, либо 1. Следовательно, исходное уравнение не имеет решений.

Ключевая идея – применение свойств точных квадратов.

Задача 2. Решить в целых числах уравнение 8z 2 = (t!) 2 + 2.

Решение. Непосредственная проверка показывает, что t = 0 и t = 1 не являются решениями уравнения. Если t > 1, то t! является чётным числом, то есть, оно представимо в виде t! = 2s. В таком случае уравнение можно преобразовать к виду 4z 2 = 2s 2 + 1. Однако, полученное уравнение заведомо не имеет решений, ибо в левой части стоит чётное число, а в правой – нечётное.

Ключевая идея – применение свойств факториалов.

Задача 3. Решить в целых числах уравнение x 2 + y 2 – 2x + 6y + 5 = 0.

Решение. Исходное уравнение можно переписать следующим образом: (x – 1) 2 + (y + 3) 2 = 5.

Из условия следует, что (x – 1), (y + 3) – целые числа. Следовательно, данное уравнение эквивалентно следующей совокупности:

Теперь можно выписать всевозможные целые решения уравнения.

Задача 4. Решить в целых числах уравнение zt + t – 2z = 7.

Решение. Исходное уравнение можно преобразовать к виду (z + 1) (t – 2) = 5. Числа (z + 1), (t – 2) являются целыми, поэтому имеют место следующие варианты:

Итак, уравнение имеет ровно четыре целых решения.

Ключевая идея – представление уравнения в виде произведения, равного целому числу.

Задача 5. Решить в целых числах уравнение n(n + 1) = (2k + 1)‼

Решение. Число (2k + 1)‼ нечётно при всех неотрицательных значениях k согласно определению (при отрицательных k оно вообще не определено). С другой стороны, оно равно числу n(n + 1), которое чётно при всех целых значениях k. Противоречие.

Ключевая идея – использование чётности/нечётности частей уравнения.

Задача 6. Решить в целых числах уравнение xy + x + 2y = 1.

Решение. Путём преобразований уравнение можно свести к следующему:

Данное преобразование не изменило ОДЗ неизвестных, входящих в уравнение, так как подстановка y = –1 в первоначальное уравнение приводит к абсурдному равенству –2 = 1. Согласно условию, x – целое число. Иначе говоря, тоже целое число. Но тогда число обязано быть целым. Дробь является целым числом тогда и только тогда, когда числитель делится на знаменатель. Делители числа 3: 1,3 –1, –3. Следовательно, для неизвестной возможны четыре случая: y = 0, y = 2, y = –2, y = –4. Теперь можно вычислить соответствующие значения неизвестной x. Итак, уравнение имеет ровно четыре целых решения: (–5;0), (–5;2), (1;–2), (1;–4).

Ключевая идея – выражение одной неизвестной через другую.

Задача 7. Решить в целых числах уравнение 5 m = n 2 + 2.

Решение. Если m = 0, то уравнение примет вид n 2 = –1. Оно не имеет целых решений. Если m 0. Тогда правая часть уравнения (как и левая) будет кратна 5. Но в таком случае n 2 при делении на 5 должно давать остаток 3, что невозможно (это доказывается методом перебора остатков, который был изложен при решении задачи 1). Следовательно, данное уравнение не имеет решений в целых числах.

Ключевая идея – нахождение остатков от деления обеих частей уравнения на некоторое натуральное число.

Задача 8. Решить в целых числах уравнение (x!) 4 + (y – 1) 4 = (z + 1) 4 .

Решение. Заметим, что в силу чётности показателей степеней уравнение эквивалентно следующему: (x!) 4 + |y – 1| 4 = |z + 1| 4 . Тогда x!, |y – 1|, |z + 1| – натуральные числа. Однако, согласно Великой теореме Ферма, эти натуральные числа не могут удовлетворять исходному уравнению. Таким образом, уравнение неразрешимо в целых числах.

Ключевая идея – использование Великой теоремы Ферма.

Задача 9. Решить в целых числах уравнение x 2 + 4y 2 = 16xy.

Решение. Из условия задачи следует, что x – чётное число. Тогда x 2 = 4x1 2 . Уравнение преобразуется к виду x1 2 + y 2 = 8x1y. Отсюда вытекает, что числа x1, y имеют одинаковую чётность. Рассмотрим два случая.

1 случай. Пусть x1, y – нечётные числа. Тогда x1 = 2t + 1, y = 2s + 1. Подставляя эти выражения в уравнение, получим:

Выполним соответствующие преобразования:

Сокращая обе части полученного уравнения на 2, получим?

В левой части стоит нечётное число, а в правой – чётное. Противоречие. Значит, 1 случай невозможен.

2 случай. Пусть x1, y – чётные числа. Тогда x1 = 2x2 + 1, y = 2y1. Подставляя эти значения в уравнение, получим:

Таким образом, получилось уравнение, точно такое же, как на предыдущем шаге. Исследуется оно аналогично, поэтому на следующем шаге получим уравнение и т.д. Фактически, проводя эти преобразования, опирающиеся на чётность неизвестных, мы получаем следующие разложения: . Но величины n и k не ограничены, так как на любом шаге (со сколь угодно большим номером) будем получать уравнение, эквивалентное предыдущему. То есть, данный процесс не может прекратиться. Другими словами, числа x, y бесконечно много раз делятся на 2. Но это имеет место, только при условии, что x = y = 0. Итак, уравнение имеет ровно одно целое решение (0; 0).

Ключевая идея – использование метода бесконечного спуска.

Задача 10. Решить в целых числах уравнение 5x 2 – 3xy + y 2 = 4.

Решение. Перепишем данное уравнение в виде 5x 2 – (3x)y + (y 2 – 4) = 0. Его можно рассмотреть как квадратное относительно неизвестной x. Вычислим дискриминант этого уравнения:

Для того чтобы уравнение имело решения, необходимо и достаточно, чтобы , то есть Отсюда имеем следующие возможности для y: y = 0, y = 1, y = –1, y = 2, y = –2.

Итак, уравнение имеет ровно 2 целых решения: (0;2), (0;–2).

Ключевая идея – рассмотрение уравнения как квадратного относительно одной из неизвестных.

Составленные автором задачи были использованы при проведении эксперимента, который состоял в следующем. Всем учащимся девятых классов были предложены разработанные задания с целью выявления уровня подготовки детей по данной теме. Каждому из учеников необходимо было предложить метод нахождения целочисленных решений уравнений. В эксперименте приняли участие 64 ученика. Полученные результаты представлены в таблице 1.

ТАБЛИЦА 1

Количество учащихся, справившихся с заданием (в процентах)

Урок по математике «Уравнения» (2класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Тема: Уравнение (2-б класс)

дать детям новое математическое понятие: «уравнение»;

сформировать умение решать уравнения на основе взаимосвязи между частью и целым;

развивать вычислительные навыки, внимание, наблюдательность, память; активизировать мыслительную деятельность;

развивать устойчивую мотивацию к процессу обучения, развивать умение решать текстовые задачи;

развивать интеллектуальные и коммуникативные общеучебные умения;

развивать организационные общеучебные умения, в том числе умение исправлять собственные ошибки.

воспитание стремления совершенствовать свою математическую речь;

умение контролировать самого себя, находить, исправлять и оценивать самостоятельно результаты своих действий;

повышение уровня познавательного интереса к предмету математики

Предметные: формировать представление о понятии «корень уравнения». Учить использовать термины «уравнение», «решение уравнений», «корень уравнения» в математической речи, решать уравнения на нахождение неизвестных компонентов сложения и вычитания.

Личностные: содействовать проявлению положительного отношения к школе и учебной деятельности, в частности, к математике.

Регулятивные: формируют умения принимать учебную задачу и следовать инструкциям учителя, удерживать цель деятельности до получения ее результата.

Познавательные: делают выводы на основе сравнения, рассуждают по аналогии, используют общие правила нахождения корней простейших уравнений при решении конкретных уравнений (дедуктивные рассуждения).

Коммуникативные: принимают участие в работе парами, используя речевые коммуникативные средства, умеют договариваться и приходить к общему решению.

Оборудование: мультимедийное оборудование, карточки для индивидуальной работы

Тип урока: введение новых знаний.

Организация урока . Мотивация к учебной деятельности:

Ребята! Сегодня мы будем заниматься интересной работой.

Соприкасаемся пальчиками с соседом по парте и говорим:

-И везде (мизинец)

II. Актуализация знаний и фиксация затруднения в деятельности.

Ну, а сейчас мы выполним знакомые для нас задания для того, чтобы подготовиться к изучению нового материала. Устный счёт.

Заполните таблицу. (работа в парах — одна таблица на парте) Слайд 3

Уменьшаемое

Что известно?(уменьшаемое, вычитаемое)

    Каким действием находят разность? (вычитанием)

    Заполняют таблицу. Говорят ответы (Азиз и др.). Проверяем на экране. Если есть ошибки, исправляем.

    Посмотрите и скажите, пожалуйста, где в таблице целое? (уменьшаемое) Части? (вычитаемое, разность)

    Вспомним правило вычитания. (Из целого вычитаем часть, получаем часть).

    Перед вами лежит карточка с математическими выражениями. Просмотрите.

    Как одним словом можно назвать эти записи? (Равенства с «окошками»)

    Какое задание надо выполнить?( Вставить числа в « окошечки», чтобы равенства стали верными.)

    Подумайте, какие числа пропущены. Решите эти выражения на карточках. Обозначьте части и целое?

    Пока обычные дети выполняют задания я занимаюсь с Женей

    Поменяйтесь карточками (Взаимопроверка)

    Работа с обычными детьми

    Проверьте по образцу на экране

    Кто выполнил без ошибок? Поднимите снежинку

    — Прочитайте равенства, в которых находили часть? ( 7 + * = 9, 6 + * = 15)

    Целое? (* — 9 = 3, * — 5 = 6)

    Вспомним правило сложения. (Складываем части, получаем целое).

    Вспомним правило вычитания. (Из целого вычитаем часть, получаем часть).

    III . «Открытие» новых знаний.

    Ребята! Посмотрите на эту математическую запись!

    Как можно назвать это выражение? ( □ + 17 = 19? Это пример с «окошком»)

    А кто знает, как называется такая запись: a — 6? (Это буквенное выражение)

    А теперь посмотрите на эту запись : x + 6 = 15.

    Встречалась ли нам раньше такая запись?

    На что она похожа? (на выражение с «окошком», буквенное выражение и т.д.) В примерах “с окошком” мы подбираем число для составления верного равенства. В буквенных выражениях подставляем вместо буквы число и вычисляем значение выражения. Запись х + 6 = 15 похожа одновременно и на буквенное выражение и на пример с окошком. Эту запись можно назвать равенством, содержащим неизвестное число.

    Кто знает, как же правильно оно называется?

    Рассмотрим более подробно это выражение.

    Что нам говорит знак «=»? (это равенство)

    Какое равенство? Все числа в нём известны? (Равенство с неизвестным, нет)

    Сравним, на какое выражение оно похоже? (Пример с «окошком»)

    Чем же оно отличается от него, что вместо «окошка» стоит? (Буква латинского алфавита.)

    Это буква «икс». Прочитаем все вместе хором эту запись.

    Если число неизвестно, значит, какая задача перед нами встаёт? (Найти это число, чтобы равенство было верным).

    Это равенство получило специальное название – «уравнение» (учитель вывешивает карточку со словом на доске).

    Уточним, что же такое «уравнение». (Это равенство, с неизвестным, которое надо найти)

    Как вы думаете, что значит, решить уравнение? ( Значит найти такое число, при котором равенство будет верным. Найти неизвестный компонент.)

    Верно, это число еще называют «корень уравнения» (учитель вывешивает карточку с термином на доске).

    III . Формулирование темы и задач урока.

    Чему будет посвящен сегодняшний урок? (Решению уравнений)

    Сформулируйте тему урока.

    Чем мы будем заниматься?

    узнать, что такое «уравнение»

    научиться решать уравнения

    Учитель открывает Слайд 8

    Попробуем сделать вывод из всего того, что мы уже узнали.

    Итак, как называется запись на слайде? ( Уравнение)

    Уравнение – это равенство, которое содержит что? (х – неизвестное число)
    Итак, первую задачу мы выполнили? Узнали, как называется выражение типа

    Проверим себя, прочитав правило на стр. 80 учебника.

    Какой вывод вы сделаете? (Нам удалось выяснить, что такое уравнение)

    Расскажите друг другу, что такое уравнение.

    Обычные дети рассказывают, что такое уравнение, я проверяю работу у Жени

    Решим это уравнение. (Учитель записывает на доске)

    — Что неизвестно? ( часть) Как найти? (применить правило)

    (Определяю неизвестный компонент. Выделяю «целое» и «части». Неизвестно часть. Применяю правило: чтобы найти часть, из целого вычитаю часть. Нахожу часть. Это корень уравнения. Выполняю проверку. Записываю ответ)

    Докажите, что эта запись является уравнением? (это равенство, которое содержит х – неизвестное число)

    — Назовите корень уравнения? ( х=9)

    Цель: составление алгоритма решения.

    -Как мы действовали при решении уравнения?

    -Составим алгоритм (план решения). Фронтальная работа.

    Алгоритм решения уравнений ( Слайд 10 ):

    1.Прочитаем уравнение. на экране

    2.Определим неизвестный компонент. и раздается на парту

    4.Найдём корень уравнения.

    V. Первичное закрепление во внешней речи . Работа по учебнику.

    Записать число. Классная работа

    Закрепим полученные знания.

    Уравнения: 9 + х = 14 и 7- х = 2 два ученика с комментированием решают у доски.

    Решаем первое уравнение (читает его). (Определяю неизвестный компонент. Выделяю «целое» и «части». Неизвестно часть. Применяю правило: чтобы найти часть, из целого вычитаю часть. Нахожу часть. Это корень уравнения. Выполняю проверку. Записываю ответ.)

    V I .Самостоятельная работа с самопроверкой по эталону (алгоритму или решение на слайде).

    Вы поработали все вместе, а сейчас поработайте самостоятельно (по вариантам).

    Обычные дети работаю самостоятельно,

    Что являлось неизвестным в ваших уравнениях? (часть)

    Как находили? (применили правило: чтобы найти часть, из целого вычитаю часть)

    Назовите корень уравнения ( x =3, x =1)

    1.Решение задачи № 6 стр.81 (дифференцированная работа)

    М.-? л., на 19 л.старше, чем 2)+

    Что вы заметили? (нет вопроса)

    Поставьте вопрос, соответствующий условию. (Сколько лет папе?)

    Можно ли сразу ответить на поставленный вопрос? (Нет.)

    Почему? ( Потому что мы не знаем, сколько лет маме.)

    Можем это узнать?

    Каким действием? (сложением)

    Зная, сколько лет маме, можем решить задачу? (да)

    1) 5+19=24 (л.) — маме.

    или 5 + (5 + 19) =29 (л.)

    Ответ: 29 лет папе.

    – Кто может, запишите решение выражением, кому сложно решаем вместе по действиям.

    Дети решают задачу самостоятельно (один на доске)

    Рефлексия деятельности. (Итог урока).

    Выполнили ли мы сегодня цель, которую поставили в начале урока? (да)

    Какие открытия вы сделали? (узнали, что такое уравнение и научились его решать)

    Что называется уравнением? ( Уравнение – это равенство, которое содержит х – неизвестное число)

    Что значит решить уравнение? ( Определить неизвестный компонент. Выделить «целое» и «части». Применить правило. Найти часть — корень уравнения. Выполнить проверку. Записать ответ)

    Кто научился решать уравнения, поднимите снежинку?

    Это значит, что мы продолжим находить ответы на трудные вопросы на следующих уроках математики.

    Ребята! Вы сегодня молодцы. Ваша работа заслуживает похвалы. Урок окончен. Запишите д/з

    I Х. Инструктаж и запись домашнего задания

    1) с. 80 № 1(3,4 столбик)

    2) Выучить правило с.80 и алгоритм решения уравнений

    Тема: Сложение двузначного числа с однозначным числом и вычитание из двузначного числа однозначное.

    Тип урока: обобщение и систематизация знаний, умений и навыков.

    — закрепить знание случаев сложения двузначного числа с однозначным числом;

    — вычитание из двузначного числа однозначное,

    — — закрепить умение дифференцировать однозначные и двузначные числа;

    — закрепить умение вычерчивать отрезки.

    — коррекция и развитие мыслительной деятельности;

    — коррекция и развитие личностных качеств обучающихся, эмоционально-волевой сферы (навыков самоконтроля, усидчивости и выдержки);

    — формирование положительной мотивации к обучению;

    — развитие интереса к предмету;

    — развитие речи, внимания, наблюдательности, памяти, пространственной ориентировки

    — воспитывать умение работать в коллективе;

    — воспитывать нравственные качества (трудолюбие, воля, настойчивость, аккуратность);

    — создание благоприятных условий на уроке.

    Оборудование: карточки для индивидуальной работы,

    Если не успели, то выполняет задание самостоятельно

    Пока обычные дети выполняют задания я занимаюсь с Женей

    Равенства с окошками, решаем вместе

    Потом даю самостоятельно решить примеры и раскрасить

    — закрепить знания случаев сложения двузначного числа с однозначным числом;

    — вычитание из двузначного числа однозначное

    Обычные дети рассказывают, что такое уравнение, я проверяю работу у Жени

    Проверяю задание-раскраску и даю работу на карточке

    Обвести в кружок двузначные числа

    6 12 3 15 20 7 19 0 8 11 16 1

    Записать число. Классная работа

    Работа по учебнику с.88 №1самостоятельно

    Обычные дети работаю самостоятельно,

    Работа по учебнику с.89 №12(1)

    Самостоятельная работа в тетради

    Зеленый отрезок длиной 9 см

    Рефлексия деятельности. (Итог урока).

    Краткое описание документа:

    Тема: Уравнение (2-б класс)

    Цели урока:

    Обучающие:

    • дать детям новое математическое понятие: «уравнение»;
    • сформировать умение решать уравнения на основе взаимосвязи между частью и целым;

    Развивающие:

    • развивать вычислительные навыки, внимание, наблюдательность, память; активизировать мыслительную деятельность;
    • развивать устойчивую мотивацию к процессу обучения, развивать умение решать текстовые задачи;
    • развивать интеллектуальные и коммуникативные общеучебные умения;
    • развивать организационные общеучебные умения, в том числе умение исправлять собственные ошибки.

    Воспитательные:

    • воспитание стремления совершенствовать свою математическую речь;
    • умение контролировать самого себя, находить, исправлять и оценивать самостоятельно результаты своих действий;
    • повышение уровня познавательного интереса к предмету математики

    Задачи:

    Предметные: формировать представление о понятии «корень уравнения». Учить использовать термины «уравнение», «решение уравнений», «корень уравнения» в математической речи, решать уравнения на нахождение неизвестных компонентов сложения и вычитания.

    Личностные: содействовать проявлению положительного отношения к школе и учебной деятельности, в частности, к математике.

    Метапредметные:

    Регулятивные: формируют умения принимать учебную задачу и следоватьинструкциям учителя, удерживать цель деятельности до получения ее результата.

    Познавательные: делают выводы на основе сравнения, рассуждают по аналогии, используют общие правила нахождения корней простейших уравнений при решении конкретных уравнений (дедуктивные рассуждения).

    Коммуникативные: принимают участие в работе парами, используя речевые коммуникативные средства, умеют договариваться и приходить к общему решению.

    Оборудование: мультимедийное оборудование, карточки для индивидуальной работы

    Тип урока: введение новых знаний.

    ХОД УРОКА

    • Организация урока. Мотивация к учебной деятельности:

    -Ребята! Сегодня мы будем заниматься интересной работой.

    Соприкасаемся пальчиками с соседом по парте и говорим:

    -И везде (мизинец)

    Слайд 1.

    II. Актуализация знаний и фиксация затруднения в деятельности.

    Слайд 2.

    Ну, а сейчас мы выполним знакомые для нас задания для того, чтобы подготовиться к изучению нового материала. Устный счёт.

    Заполните таблицу.(работа в парах — одна таблица на парте) Слайд 3

    Уменьшаемое

    18

    17

    16

    16

    15

    15

    14

    Вычитаемое

    9

    9

    8

    7

    9

    8

    9

    Разность

    -Что известно?(уменьшаемое, вычитаемое)

    -Каким действием находят разность? (вычитанием)

    Заполняют таблицу. Говорят ответы (Азиз и др.). Проверяем на экране. Если есть ошибки, исправляем.

    -Посмотрите и скажите, пожалуйста, где в таблице целое?(уменьшаемое) Части? (вычитаемое, разность)

    -Вспомним правило вычитания. (Из целого вычитаем часть, получаем часть).

    Олимпиадные задания. Решение уравнений в целых числах
    методическая разработка по алгебре (9, 10, 11 класс) на тему

    В данной работе представлены различные способы решения уравнений в целых числах. Работа может быть использована при подготовке к олимпиадам, на кружковых и факультативных занятиях.

    Скачать:

    Номер задания
    ВложениеРазмер
    aksanova_ii._olimpiadnye_zadaniya.reshenie_uravneniy_v_tselyh_chislah.docx100.62 КБ

    Предварительный просмотр:

    МБОУ «Высокогорская средняя общеобразовательная школа №2

    Высокогорского муниципального района Республики Татарстан»

    Решение уравнений в целых числах

    Аксанова Ильсияр Исмагиловна

    Учитель математики высшей категории

    С. Высокая Гора – 2015 г.

    Работа посвящена решению уравнений в целых числах. Актуальность этой темы обусловлена тем, что задачи, основанные на решении уравнений в целых числах, часто встречаются на вступительных экзаменах в высшие учебные заведения и на олимпиадах по математике и на ЕГЭ в старших классах. В школьной программе эта тема рассматривается в ознакомительном порядке. В работе представлены различные способы решения уравнений в целых числах, разобраны конкретные примеры. Данная работа будет полезна учителям старших классов для подготовки к ЕГЭ и олимпиадам.

    Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми , в честь древнегреческого математика Диофанта Аксандрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

    Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

    не имеет ненулевых рациональных решений для всех натуральных n > 2.

    При решении уравнений в целых и натуральных числах можно условно выделить следующие способы решения:

    • способ перебора вариантов;
    • применение алгоритма Евклида;
    • применение цепных дробей;
    • разложения на множители;
    • решение уравнений в целых числах как квадратных относительно какой-либо переменной;
    • метод остатков;
    • метод бесконечного спуска;
    • оценка выражений, входящих в уравнение.

    В работе представлены два приложения: п риложение 1. Таблица остатков при делении степеней ( a n : m ); приложение 2. Задачи для самостоятельного решения

    1. Способ перебора вариантов.

    Пример 1.1. Найти множество всех пар натуральных чисел, которые являются решениями уравнения 49 х + 51 у = 602.

    Решение. Выразим из уравнения переменную х через у х = , так как х и у – натуральные числа, то

    х = 602 — 51 у ≥ 49, 51 у ≤553, 1≤ у ≤10 .

    Полный перебор вариантов показывает, что натуральными решениями уравнения являются х =5, у =7.

    2. Применение алгоритма Евклида. Теорема.

    Дано уравнение ax+by=c , где a, b, c -целые числа, a и b не равны 0.

    Теорема: Если c не делится нацело на НОД( a,b ), то уравнение не разрешимо в целых числах. Если НОД( a,b )=1или c делится на НОД( a,b ), то уравнение разрешимо в целых числах. Если (x 0 , y 0 )- какое-нибудь решение уравнения, то все решения уравнения задаются формулами:

    y=y 0 +at , где t — принадлежит множеству целых чисел.

    Пример 2.1. Решить уравнение в целых числах 5 х + 7 у = 19

    Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

    Тогда 5 x 0 + 7 y 0 = 19, откуда

    5( х – x 0 ) + 7( у – y 0 ) = 0,

    5( х – x 0 ) = –7( у – y 0 ).

    Поскольку числа 5 и 7 взаимно простые, то

    х – x 0 = 7 k , у – y 0 = –5 k.

    Значит, общее решение:

    х = 1 + 7 k , у = 2 – 5 k ,

    где k – произвольное целое число.

    Ответ: (1+7 k ; 2–5 k ), где k – целое число.

    Пример 2.2. Решить уравнение 201 х – 1999 у = 12.

    Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

    НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

    Запишем этот процесс в обратном порядке:

    1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

    = 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

    = 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

    Значит, пара (1273, 128) является решением уравнения 201 х – 1999 у = 1. Тогда пара чисел

    x 0 = 1273·12 = 15276, y 0 = 128·12 = 1536

    является решением уравнения 201 х – 1999 у = 12.

    Общее решение этого уравнения запишется в виде

    х = 15276 + 1999 k , у = 1536 + 201 k , где k – целое число,

    или, используя, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201, имеем

    х = 1283 + 1999 n , у = 129 + 201 n , где n – целое число.

    Ответ: (1283+1999 n , 129+201 n ), где n – целое число.

    3. Метод остатков.

    Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.

    Замечание . Говоря строго математическим языком, для решения уравнения в данном случае применяется теория сравнений.

    Рассмотрим примеры, которые раскрывают сущность данного метода.

    Пример 3.1. Решить уравнение в целых числах x 3 + y 3 = 3333333;

    Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в приложении 1), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

    Ответ: целочисленных решений нет.

    Пример 3.2. Решить уравнение в целых числах x 3 + y 3 = 4( x 2 y + xy 2 + 1).

    Перепишем исходное уравнение в виде ( x + y ) 3 = 7( x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

    Ответ: целочисленных решений нет.

    Пример 3.3. Решить в целых числах уравнение x 2 + 1 = 3 y .

    Решение. Заметим, что правая часть уравнения делится на 3 при любом целом y .

    Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.

    Если х = 3 k , то правая часть уравнения на 3 не делится.

    Если х = 3 k+ 1, то x 2 + 1= (3 k+ 1) 2 +1=3 m +2, следовательно, опять левая часть на 3 не делится.

    Если х = 3 k+ 2, то x 2 + 1= (3 k+ 2) 2 +1=3 m +2, следовательно, и в этом случае левая часть уравнения на три не делится.

    Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, при том, что левая часть уравнения делится на три при любых значениях переменной y . Следовательно, уравнение в целых числах решений не имеет.

    Ответ: целочисленных решений нет.

    Пример 3.4. Решить в целых числах x³ — 3y³ — 9z³ = 0 (1)

    Решение. Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).

    Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение (1) к виду

    x ³ = 3 y ³ + 9 z ³ (2)

    Так как правая часть полученного уравнения делится на 3, то и левая должна делиться на три, следовательно, так как 3 — число простое, х делится на 3, т.е. х = 3 k , подставим это выражение в уравнение (2), получим:

    27 k 3 = 3 y ³ + 9 z ³, откуда

    9 k 3 = y ³ + 3 z ³ (3)

    следовательно, y ³ делится на 3 и y = 3 m . Подставим полученное выражение в уравнение (3): 9 k 3 = 27 m ³ + 3 z ³, откуда

    3 k 3 = 9 m ³ + z ³ (4)

    В свою очередь, из этого уравнения следует, что z 3 делится на 3, и z = 3 n . Подставив это выражение в (4), получим, что k 3 должно делиться на 3.

    Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.

    4. Решение уравнений в целых числах сведением их к квадратным.

    Пример 4.1. Решить в простых числах уравнение

    х 2 – 7 х – 144 = у 2 – 25 у .

    Решим данное уравнение как квадратное относительно переменной у . Получим: у = х + 9 или у = 16 – х .

    Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

    Так как х, у – простые, то из равенства у = 16 – х , имеем

    С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

    Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

    Пример 4.2 . Решить в целых числах уравнение x + y = x 2 – xy + y 2 .

    Рассмотрим данное уравнение как квадратное уравнение относительно x :

    x 2 – ( y + 1) x + y 2 – y = 0.

    Дискриминант этого уравнения равен –3 y 2 + 6 y + 1. Он положителен лишь для следующих значений у : 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х , которое легко решается.

    Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

    Пример 4.3 . Решить уравнение в целых числах: 5 х 2 +5 у 2 +8 ху +2 у -2 х +2=0.

    Рассмотрим уравнение как квадратное относительно х:

    5 х 2 + (8 у — 2) х + 5 у 2 + 2 у + 2 = 0

    D = (8 у — 2) 2 — 4·5(5 у 2 + 2 у + 2) = 64 у 2 — 32 у + 4 = -100 у 2 — 40 у – 40 = = -36( у 2 + 2 у + 1) = -36( у + 1) 2

    Для того, чтобы уравнение имело решения, необходимо, чтобы D = 0.

    -36( у + 1) 2 = 0. Это возможно при у = -1, тогда х = 1.

    5. Разложение на множители .

    Пример 5.1. Решить в целых числах уравнение x 2 – xy – 2 y 2 = 7.

    Разложим левую часть на множители ( x – 2 y )( x + y ) = 7.

    Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

    1) x – 2 y = 7, x + y = 1;

    2) x – 2 y = 1, x + y = 7;

    3) x – 2 y = –7, x + y = –1;

    4) x – 2 y = –1, x + y = –7.

    Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

    Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

    Пример 5.2 . Решить уравнение в целых числах: х 2 + 23 = у 2

    Решение. Перепишем уравнение в виде:

    у 2 — х 2 = 23, ( у — х )( у + х ) = 23

    Так как х и у – целые числа и 23 – простое число, то возможны случаи:

    Решая полученные системы, находим:

    Пример 5.3 . Решить уравнение в целых числах y 3 — x 3 = 91.

    Решение. Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

    ( y — x )( y 2 + xy + x 2 ) = 91

    Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

    Проводим исследование. Заметим, что для любых целых x и y число

    y 2 + yx + x 2 ≥ y 2 — 2| y || x | + x 2 = (| y | — | x |) 2 ≥ 0,

    следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение равносильно совокупности систем уравнений:

    Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

    Пример 5.4 . Решить в целых числах уравнение x + y = xy .

    Решение. Перенесем все члены уравнения влево и к обеим частям полученного уравнения прибавим (–1)

    x + y – xy – 1 = – 1

    Сгруппируем первое – четвертое и второе – третье слагаемые и вынесем общие множители, в результате получим уравнение: ( x — 1)( y — 1) = 1

    Произведение двух целых чисел может равняться 1 в том и только в том случае, когда оба этих числа равны или 1, или (–1). Записав соответствующие системы уравнений и, решив их, получим решение исходного уравнения.

    Пример 5.5 . Доказать, что уравнение ( x — y ) 3 + ( y — z ) 3 + ( z — x ) 3 = 30 не имеет решений в целых числах.

    Решение. Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

    ( x — y )( y — z )( z — x ) = 10

    Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

    Ответ: целочисленных решений нет.

    6. Метод бесконечного спуска.

    Метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

    Пример 6.1 . Решить уравнение в целых числах 5 x + 8 y = 39.

    Выберем неизвестное, имеющее наименьший коэффициент , и выразим его через другое неизвестное: . Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3 y без остатка делится на 5.

    Введем дополнительную целочисленную переменную z следующим образом: 4 –3 y = 5 z . В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами. Решать его будем уже относительно переменной y , рассуждая аналогично: . Выделяя целую часть, получим:

    Рассуждая аналогично предыдущему, вводим новую переменную

    Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z : = . Требуя, чтобы было целым, получим: 1 – u = 2 v , откуда u = 1 – 2 v . Дробей больше нет, спуск закончен.

    Теперь необходимо «подняться вверх». Выразим через переменную v сначала z , потом y и затем x :

    z = = = 3 v – 1; = 3 – 5 v .

    Формулы x = 3+8 v и y = 3 – 5 v , где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

    Ответ: x = 3+8 v и y = 3 – 5 v.

    7. Оценка выражений, входящих в уравнение.

    Пример 7.1. Решить в целых числах уравнение ( х 2 + 4)( у 2 + 1) = 8ху

    Решение. Заметим, что если ( х ;у ) – решение уравнения, то (- х ;- у ) – тоже решение.

    И так как х = 0 и у = 0 не являются решением уравнения, то, разделив обе части уравнения на ху, получим:

    Пусть х > 0, у > 0, тогда, согласно неравенству Коши,

    тогда их произведение ( х + )( у + ) = 4·2 = 8, значит, х + = 4 и у + = 2.

    Отсюда находим х = 2 и у = 1 – решение, тогда х = -2 и у = -1 – тоже решение.

    Пример 7.2 . Решить уравнение в целых числах

    x 2 + 13 y 2 – 6 xy = 100

    Решение . x 2 + 13 y 2 –6 xy= 100 ↔ ( x- 3 y ) 2 + 4 y 2 = 100 . Так как ( x- 3 y ) 2 ≥ 0 , то 4 y 2 ≤ 100 , или │ 2 y│≤ 10 . Аналогично, в силу 4 y 2 ≥ 0 должно выполняться │x- 3 y│≤ 10 .


    источники:

    http://infourok.ru/urok-po-matematike-uravneniya-klass-4009932.html

    http://nsportal.ru/shkola/algebra/library/2016/04/19/olimpiadnye-zadaniya-reshenie-uravneniy-v-tselyh-chislah