Выделение полного квадрата в уравнении кривой

Выделить полный квадрат онлайн

Задача выделения полного квадрата заключается в преобразовании квадратного многочлена следующим образом:

где и неизвестные параметры которые требуется определить.

Для определения неизвестных параметров и , преобразуем приведенное выше равенство следующим образом:

и далее, раскроем скобки:

Для того, чтобы приведённое выше равенство соблюдалось, приравняем коэффициенты при одинаковых степенях:

В полученной системе уравнений, первое уравнение обозначает верное тождество при любых значениях параметра , поэтому его можно исключить. Из второго уравнения выражаем параметр и подставляем полученное выражение в третье уравнение системы:

Упрощаем третье уравнение системы и выражением из него значение параметра :

Подставляем полученные значения и в самое первое уравнение и получаем формулу для выделения полного квадрата из квадратного многочлена:

Необходимость выделения полного квадрата часто возникает при решении задач интегрирования рациональных функций. Кроме того, выделив полный квадрат, можно получить формулу для решения квадратных уравнений.

Наш онлайн калькулятор выделяет полный квадрат для многочлена второй степени с описанием подробного хода решения на русском языке.

Приведение кривой второго порядка к каноническому виду

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение. Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ1=-2, λ2=8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x1 2 -2y1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x1=1: x 1=(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
x 2=(1,1); .
Итак, имеем новый ортонормированный базис ( i 1, j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

Задание. Привести к каноническому виду уравнение линии 17x 2 + 12xy + 8y 2 — 20 = 0.
Решение.Пример 2

Задание. Привести к каноническому виду уравнение линии второго порядка, используя теорию квадратичных форм и определить её вид. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Решение

Задание. Привести уравнение к каноническому виду: 16x 2 — 9y 2 -64x — 8y +199 = 0.
Решение.Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис. Изобразить гиперболу на чертеже, указав фокусы, асимптоты и директрисы.
Решение:Скачать решение

Задание. Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение:Скачать решение

2.7 Приведение кривой 2-го порядка к каноническому виду (с помощью выделения полного квадрата)

Рассмотрим случай, когда в общем уравнении (2.13) Отсутствует слагаемое с произведением координат, т. е. В = 0. Начнем с рассмотрения примера.

Пример 2.5. Привести к каноническому виду уравнение кривой

4((X – 0,5)2 – 0,25) – ((Y – 1)2 – 1) + 1 = 0;

4(X – 0,5)2 – 1 –(Y – 1)2 + 1 + 1 = 0

Получили гиперболу с центром в точке (0,5;1), с действительной полуосью B = 1, мнимой полуосью А = 0,5.

Выделяя полные квадраты, исходное уравнение (2.13), где коэффициент В = 0, можно привести к одному из следующих видов (мы здесь опустим случай вырождения):

Первые два уравнения определяют эллипс и гиперболы, центр симметрии которых находится в точке (X0, Y0), а оси симметрии параллельны осям координат.

Два последних уравнения – это параболы, вершина которых смещена из начала координат в точку (X0, Y0), а ось симметрии либо параллельна оси ОY, либо оси ОХ.

Введем теперь на плоскости новую систему координат ХОY (см. пунктир на рисунке 2.8), с новым началом координат в точке(X0, Y0) и осями ОХ, ОY, параллельными ОХ и ОY.

Произвольная точка М (Х, У) получит «новые координаты» М(Х, Y), причем связь между «новыми» и «старыми» координатами задается формулами:

Такое преобразование системы координат называется Параллельным Переносом (сдвигом). В этой «новой» системе координат уравнения кривых примут уже знакомый нам канонический вид:


источники:

http://math.semestr.ru/line/curve-canonica.php

http://matica.org.ua/metodichki-i-knigi-po-matematike/iunit-1-analiticheskaia-geometriia-na-ploskosti/2-7-privedenie-krivoi-2-go-poriadka-k-kanonicheskomu-vidu-s-pomoshchiu-vydeleniia-polnogo-kvadrata