Выражения тождества уравнения как решать

Тождества: определение, обозначение, примеры

Начнем разговор о тождествах, дадим определение понятия, введем обозначения, рассмотрим примеры тождеств.

Что представляет собой тождество

Начнем с определения понятия тождества.

Тождество представляет собой равенство, которое верно при любых значениях переменных. Фактически, тождеством является любое числовое равенство.

По мере разбора темы мы можем уточнять и дополнять данное определение. Например, если вспомнить понятия допустимых значений переменных и ОДЗ, то определение тождества можно дать следующим образом.

Тождество – это верное числовое равенство, а также равенство, которое будет верным при всех допустимых значениях переменных, которые входят в его состав.

Про любые значения переменных при определении тождества речь идет в пособиях и учебниках по математике для 7 класса, так как школьная программа для семиклассников предполагает проведение действий исключительно с целыми выражениями (одно- и многочленами). Они имеют смысл при любых значениях переменных, которые входят в их состав.

Программа 8 класса расширяется за счет рассмотрения выражений, которые имеют смысл только для значений переменных из ОДЗ. В связи с этим и определение тождества меняется. Фактически, тождество становится частным случаем равенства, так как не каждое равенство является тождеством.

Знак тождества

Запись равенства предполагает наличие знака равенства « = » , от которого справа и слева располагаются некоторые числа или выражения. Знак тождества имеет вид трех параллельных линий « ≡ » . Он также носит название знака тождественного равенства.

Обычно запись тождества ничем не отличается от записи обыкновенного равенства. Знак тождества может быть применен для того, чтобы подчеркнуть, что перед нами не простое равенство, а тождество.

Примеры тождеств

Обратимся к примерам.

Числовые равенства 2 ≡ 2 и — 3 ≡ — 3 это примеры тождеств. Согласно определению, данному выше, любое верное числовое равенство по определению является тождеством, а приведенные равенства верные. Их также можно записать следующим образом 2 ≡ 2 и — 3 ≡ — 3 .

Равенства 2 + 3 = 5 и 7 − 1 = 2 · 3 также можно считать тождествами, так как они являются вернными. Здесь также допустима запись 2 + 3 ≡ 5 и 7 − 1 ≡ 2 · 3 .

Тождества могут содержать не только числа, но также и переменные.

Возьмем равенство 3 · ( x + 1 ) = 3 · x + 3 . Это равенство является верным при любом значении переменной x . Подтверждает сей факт распределительное свойство умножения относительно сложения. Это значит, что приведенное равенство является тождеством.

Возьмем тождество y · ( x − 1 ) ≡ ( x − 1 ) · x : x · y 2 : y . Рассмотрим область допустимых значений переменных x и y . Это любые числа, кроме нуля.

Возьмем равенства x + 1 = x − 1 , a + 2 · b = b + 2 · а и | x | = x . Существует ряд значений переменных, при которых эти равенства неверны. Например, при при x = 2 равенство x + 1 = x − 1 обращается в неверное равенство 2 + 1 = 2 − 1 . Да и вообще, равенство x + 1 = x − 1 не достигается ни при каких значениях переменной x .

Во втором случае равенство a + 2 · b = b + 2 ·a неверно в любых случаях, когда переменные a и b имеют различные значения. Возьмем a = 0 и b = 1 и получим неверное равенство 0 + 2 · 1 = 1 + 2 · 0 .

Равенство, в котором | x | — модуль переменной x , также не является тождеством, так как оно неверно для отрицательных значений x .

Это значит, что приведенные равенства не являются тождествами.

Если вспомнить тригонометрию и логарифмы, то здесь мы также можем найти примеры тождеств. Это основное логарифмическое тождество a log a b = b и основное тригонометрическое тождество вида sin 2 α + cos 2 α = 1 .

В математике мы постоянно имеем дело с тождествами. Делая записи действий, производимых с числами, мы работаем с тождествами. Тождествами являются записи свойств степеней, свойств корней и прочие.

Тождество. Тождественные преобразования. Примеры.

Тождества в основном применяются для решения линейных уравнений.

Тождеством называется равенство, которое верно при всех значениях переменных.

Или другими словами, тождество — это равенство, которое выполняется на всём множестве значений переменных, входящих в него, например:

В этих выражениях при всех значениях a и b равенство верное.

2 выражения с равными значениями при всех значениях переменных являются тождественно равными.

Равенство x+2=5 может существовать не при всех значениях x, а лишь при x=3. Это равенство не будет тождеством, это будет уравнением. Кроме того, тождеством будет равенство, которое не содержит переменные, например 25 2 =625.

Тождественное равенство обозначают символом «≡» (тройное равенство).

Примеры тождеств.

— Тождество Эйлера (кватернионы);

— Тождество Эйлера (теория чисел);

— Тождество четырёх квадратов;

— Тождество восьми квадратов;

Тождественные преобразования.

Тождественное преобразование выражения (преобразование выражения) – это подмена одних выражений другими, тождественно равными друг другу.

Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.

Выполним тождественные преобразования с такой дробью: .

Полученное тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения), т.к. знаменатель левой части не может быть равен нулю.

Доказательство тождеств.

Для того, чтоб доказать тождество нужно сделать тождественные преобразования обеих или одной части равенства, и получить слева и справа одинаковые алгебраические выражения.

Например, доказать тождество:

Вынесем х за скобки:

Это равенство есть тождество, при х≠0 и х≠1.

Чтоб доказать, что равенство не является тождеством, нужно найти 1-но значение переменной (которое допустимо) у которой числовые выражения (которые были получены) станут не равными друг другу.

5−1 ≠ 5+1 — подставим, к примеру, 5.

Это равенство не тождество.

Разница между тождеством и уравнением.

Тождество верно при всех значениях переменных, а уравнение – это равенство, которое верно только при одном либо нескольких значениях переменной.

Это выражение верно лишь при х = 10.

Тождеством будет равенство, которое не содержит переменных.

Тождество

Тема урока: § 4. Тождество.

Тождественные выражения

Сравним значения выражений \( 2x+3x^<2>\) и \( 5x^<3>\) при некоторых значениях переменной \( x.\) При \( x=2\) значение первого выражения \( 16,\) а второго \( 40.\) Числа \( 16\) и \( 40\) — соответственные значения выражений: \( 2x+3x^<2>\) и \( 5x^<3>.\) Некоторые пары соответственных значений этих выражений показаны в таблице:

$$\textcolor<#ed5fa6>$$$$-0,4$$$$-0,1$$$$ \ \ 0 \ \ $$$$0,1$$$$ \ \ 1 \ \ $$
$$2x+3x^<2>$$$$-0,32$$$$-0,17$$$$0$$$$0,23$$$$5$$
$$5x^<3>$$$$-0,32$$$$-0,005$$$$0$$$$0,005$$$$5$$

Легко заметить, что не при всех значениях переменной \( x\) значения выражений \( 2x+3x^<2>\) и \( 5x^<3>\) равны, а значит нельзя сказать, что выражения тождественно равны.

Что такое тождество?

Выражения \( x+5\) и \( 5+x\) тождественно равны, поэтому равенство \( x+5=5+x\) верно при любых значениях \( x.\) Такое равенство называют тождеством.

Определение:
Тождеством называется такое равенство двух выражений, которое верно при любых значениях переменных.

Примеры тождеств

Верное числовое равенство также называют тождеством.

Тождественные преобразования выражений

Рассмотрим выражения \( x(y+7)\) и \( xy+7x.\) Вычислим их значения при \( x=9\) и \( y=-2\)

Мы видим что при \( x=9\) и \( y=-2\) соответственные значения выражений \( x(y+7)\) и \( xy+7x\) равны. Из распределительного и переместительного свойств умножения следует, что соответственные значения этих выражений равны при любых значениях переменных. О таких выражениях говорят, что они тождественно равны.

При решении уравнений, вычислении значений выражений и ряде других случаев одни выражения заменяют другими, тождественно равными им. Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами. Мы уже встречались с тождественными преобразованиями выражений. К ним относятся, например, приведение подобных слагаемых, раскрытие скобок.

Пример 1. Приведем подобные слагаемые в сумме \(5x+2x-3x.\)

Чтобы привести подобные слагаемые, надо, как известно, сложить их коэффициенты и результат умножить на общую буквенную часть.

Имеем: $$5x+2x-3x=(5+2-3)x=4x$$ Выполненное преобразование основано на распределительном свойстве умножения.

Пример 2. Раскроем скобки выражения \(2a+(b-3c).\)

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак “плюс”: если перед скобками стоит знак “плюс”, то скобки можно опустить, сохранив знак каждого слагаемого, заключенного в скобки.

Получим: $$2a+(b-3c)=2a+b-3c$$ Проведенное преобразование основано на сочетательном свойстве сложения.

Пример 3. Раскроем скобки в выражении \(a-(4b-c).\)

Применим правило раскрытия скобок, перед которыми стоит знак “минус”: если перед скобками стоит знак “минус”, то скобки можно опустить, изменив знак каждого слагаемого, заключенного в скобки.

Выполненное преобразование также основано на свойствах действий над числами. Действительно, представим данное выражение в виде суммы: $$a-(4b-c)=a+(-1)\cdot(4b-c)$$ Применим распределительное и сочетательное свойства умножения:

Доказательство тождеств

Если в выражении \(\textcolor<#ed5fa6><5(b-c)-3c>\) раскрыть скобки, а затем привести подобные слагаемые, то получится тождественно равное ему выражение \(\textcolor<#ed5fa6><5b-8c.>\)

верно при любых значениях переменных. Такие равенства называют тождественными.

Свойства действий над числами также являются тождествами, приведем некоторые из них:

Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений.

Докажем, например, тождество $$\tag <1>7(2+b)-(14-b)=8b$$ Преобразуем левую часть равенства \((1):\)

\[\small\begin <2>7(2+b)-(14-b)= \\ 14+7b-14+b= \\ 8b \end\] В результате тождественных преобразований мы получили правую часть равенства \((1).\) Значит, это равенство есть тождество.

Для доказательства тождества иногда преобразуют каждую его часть. Докажем, например, тождество $$\tag <2>d(c-a)+ab=a(b-d)+cd$$ Выполним преобразования: \[\small\begin <2>d(c-a)+ab=cd-ad+ab, \\ a(b-d)+cd= \\ ab-ad+cd= \\ cd-ad+ab \end\]

Левая и правая части равенства \((2)\) тождественно равны одному и тому же выражению. Поэтому они тождественно равны между собой. Значит, равенство \((2)\) — тождество.

Не всякое равенство есть тождество. Так, равенство \(x+2=2x\) не является тождеством. Действительно, если бы это равенство было тождеством, то оно было бы верным при всех значениях \(x.\) Однако, например, при \(x=1\) это равенство не является верным. Значит, оно не является тождеством.

Задачи для самостоятельного решения

№1. Являются ли выражения тождественно равными:

Первые два выражения тождественно равны. Т.е. равны при любых значениях переменной \(\footnotesize c. \)

Вторая пара является тождеством, можно понять с помощью сочетательного закона сложения: $$a+(b+c)=(a+b)+c$$

Тождество, т.к. \(\footnotesize -2a+2a=2a-2a=0 \)

Тождество, т.к. \(\footnotesize (x-x)a=0\cdot a=0 \)

Пятая пара выражений не будет являться тождеством. Предположим обратное:

Видно что равенство верно при \(\footnotesize x=y,\) но если \(\footnotesize x\) и \(\footnotesize y\) отличны друг от друга, то равенства достигаться не будет.

Тождество. Рассмотрим первое выражение

Видно, что первое выражение в точности является вторым.

№2. Упростите выражение, используя переместительное и сочетательное
свойства умножения:


источники:

http://www.calc.ru/Tozhdestvo-Tozhdestvennyye-Preobrazovaniya-Primery.html

http://reshu.su/algebra/04/