Вывести кинематическое уравнение равнопеременного движения

Кинематические уравнения равнопеременного движения.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

=

Проекция вектора скорости на ось ОХ:

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= ‘ = «

Учитывая, что 0 – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости, формула ускорения будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

= 0 + t

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратовпоможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, тоуравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx

|следующая лекция ==>
|Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Дата добавления: 2016-01-29 ; просмотров: 7513 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Уравнения равнопеременного движения

ФИЗИЧЕСКИЕ ОСНОВЫ

МЕХАНИКИ

Учебное пособие для студентов

института путей сообщения

ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ. Учебное пособие по физике для студентов института путей сообщения.

Учебное пособие представляет собой курс лекций по физике. Пособие написано в соответствии с программой для инженерно-технических специальностей высших учебных заведений. Однако, в отличие от Общего курса физики в данном учебном пособии дополнительно рассмотрены вопросы применения физических законов к процессам на железнодорожном транспорте. Таких как создание силы тяги локомотива, динамики поезда, динамики вагона, собственных и вынужденных колебаний вагона, колебаний тягового двигателя на рессорах подвески и т.д.

В конце каждой главы приведены контрольные задачи. Все формулы и решения задач приведены в Международной системе единиц СИ.

Авторы: А. В. Шушарин, ст. преподаватель кафедры ЕНД,

М.А. Круглова, доцент кафедры ЕНД.

Рецензенты: А.Е. Гришкевич, профессор кафедры

Общей и теоретической физики ЮУрГУ,

канд. физ.мат. наук;

В. Л. Федяев, доцент, зам. директора ЧИПС,

Печатается по решению научно-методического Совета

Челябинского института путей сообщения

Филиал Уральского государственного университета путей сообщения

Челябинский институт путей сообщения, 2010.

«Физика – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи, и законы её движения» (БСЭ).

Материя – это та реальность, из которой создан окружающий мир, которую можно обнаружить посредством ощущений. Материя существует в двух видах: как вещество и как силовые поля. Всякое изменение материи является движением. Простейшая форма движения материи – механическое движение – это процесс изменения взаимного расположения тел или их частей в пространстве с течением времени. Раздел физики, занимающийся изучением закономерностей механического движения, называется механикой.

Развитие механики, как науки, было вызвано потребностями техники и строительства. Древнейшие постройки Египта свидетельствуют о знании закона равновесия тел. Началом следует считать III в. до н.э., когда древнегреческий ученый Архимед сформулировал закон рычага и законы равновесия плавающих тел. Развитие механики было продолжено в 16 – 17 веках трудами Коперника, Кеплера, Гюйгенса, и особенно Галилея, впервые применившего экспериментальный метод исследования. Окончательно основные законы классической механики были экспериментально установлены и сформулированы И. Ньютоном в его многотомном труде «Математические начала натуральной философии» (1687 г.). В этом сочинении был воплощен идеал научной теории – отыскание количественных закономерностей в явлениях природы. Дальнейшее развитие механики шло по созданию аналитических методов решения задач, по созданию новых направлений механики. Развитие не прекращается и в наше время. В 20 веке были созданы новые области механики: релятивистская механика и квантовая механика, со своими законами и методами решения задач (рис.1).

В классической механике изучаются законы движения макроскопических тел со скоростью меньше скорости света (V 8 м/с) и на расстоянии до 10 22 м (но может быть и далее). Макроскопические тела это обычные тела, содержащие громадное количество молекул.

Закономерности механического движения микрообъектов (атомы, элементарные частицы) изучает квантовая механика.Критерием применения законов микромира является универсальная константа – постоянная Планка ћ =1,054·10 -34 Дж∙с. Если момент импульса частицы сопоставим с постоянной Планка, mVr ≈ ħ, то проявляются волновые свойства частиц, исчезает понятие траектории. Неизвестны законы движения на расстоянии менее, чем 10 -20 м. Может, здесь уже следует учитывать дискретность пространства и времени?

Закономерности движения тел со скоростями, близкими к скорости света, изучает релятивистская механика или специальная теория относительности. Её основой является постулат Эйнштейна о существования предельной скорости движения материи, равной скорости света в вакууме. Движение с большей скоростью теорией запрещено.

Квантовая механика и релятивистская механика являются более общими научными теориями, чем классическая механика. Они установили границы применения классической механики. Законы квантовой и релятивистской механики переходят в законы классической механики в предельном случае движения тел большой массы в большой области пространства с малыми скоростями. Но классическая механика не утратила своего значения с созданием более общих теорий, поскольку поправки новых теорий в задачах техники ничтожно малы.

Классическая механика подразделяется на три части. Кинематика (от греческого слова kinema – движение) – раздел механики, в котором изучаются законы движения тел без учета их массы и действующих на них сил. Динамика (от греческого dynamis – сила) изучает движения тел в связи с теми причинами, которые обусловливают это движение. Статика (от греческого statike – равновесие) изучает условия равновесия тел.

Механическое движение тел происходит в пространстве и времени. Эти понятия прочно связаны с нашим житейским опытом и кажутся нам очевидными и незыблемыми. Со времен Ньютона в классической механике постулируется, что пространство и время имеют абсолютный характер, т.е. существуют независимо друг от друга, от находящихся в них объектов и протекающих процессов. Но в ходе развития физики и философии эти понятия претерпели существенные изменения. В релятивистской механике пространство и время связаны между собой.

Пространство в классической механике однородно, изотропно и эвклидово (его геометрия описывается геометрией Эвклида). Однородность пространства означает, что любая его точка равноправна. То есть начало отсчета координатной системы можно перенести в любую точку пространства; этот перенос никак не влияет на процессы, происходящие с телом. Изотропность пространства означает равноправие всех направлений, то есть, если все оси системы координат повернуть, то это не изменит протекающие процессы. Время в классической механике – абсолютная реальность, не зависящая от тел, оно однородно и во всей Вселенной течет равномерно и одинаково. Однородность времени означает равноправность всех его моментов, т.е. время протекает непрерывно и одинаково от прошедшего к будущему, и любой из его моментов может быть выбран за начало отсчета любого процесса при одинаковых условиях.

Физика является фундаментальной наукой. Она является базой всех технических дисциплин, её законы используются в самых разных разделах науки и техники. Знание физики повышает кругозор образованного человека, он более критично относится к сверхновым теориям, к ложным наукам. Для специалиста путей сообщения особенно важна механика, так как движение транспортных средств на Земле вполне подчиняется законам классической механики. Прочное знание механики повышает компетентность специалиста при решении технических проблем.

Системы единиц измерения физических величин

Измерить какую-либо физическую величину — это значит сравнить ее с другой однородной физической величиной, принятой за единицу измерения. Единицы измерения сводятся в систему, охватывающую единицы всех физических величин и позволяющую оперировать с ними. Для построения системы произвольно выбирают единицы для нескольких не зависящих друг от друга величин. Эти величины называются основными. Остальные величины и их единицы выводятся из законов, связывающих их с основными единицами. Они называются производными.

Т.к. выбор основных единиц произволен, то может быть построен целый ряд систем единиц: СГС, СГСЭ, МКС, МКГСС и др. Во всем мире и в нашей стране (болеет 80 лет) в качестве предпочтительной принята Международная система единицСИ – единая система для всех разделов физики. В этой системе основными единицами измерения являются:

длины L – 1 метр (м), равный 1.650.763,73 длин волн излучения оранжевого цвета изотопа криптона 86 в вакууме;

массы m – 1 килограмм (кг), равный массе международного прототипа килограмма;

времени t – 1 секунда (с), равная 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

температуры T – 1 кельвин (К), равный 1/273,15 термодинамической температуры затвердевания дистиллированной воды при давлении 101 325 Па;

количества вещества v – 1 моль, содержащий столько атомов, сколько содержится в 0,012 кг нуклида углерода С12;

силы тока J – 1 ампер (А), который, проходя по двум параллельным | прямым проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенных на расстоянии 1 м в вакууме, вызывает силу 2∙10 -7 Н на каждый метр длины;

силы света I – 1 канделла (Кд), равная силе света в заданном на правлении источника, испускающего монохроматическое излучение частотой 540 · 10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/ 683 Вт/ср.

Дополнительные единицы: рад (радиан) – единица плоского угла, ср (стерадиан) – единица телесного угла.

1. КИНЕМАТИКА ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ

Основные понятия кинематики

Существует два основных вида движения тел: поступательное и вращательное. При поступательном движении любая прямая, связанная с телом, остается параллельной самой себе, поэтому изучение движения тела сводится к изучению движения любой точки тела. Тело можно принять за материальную точку, масса которой равна массе тела. Материальной точкой называется макроскопическое тело, размеры и форму которого можно не учитывать в данной задаче. Например, движение поезда между станциями можно рассматривать как движение материальной точки.

Положение материальной точки в пространстве можно определить только относительно других тел. Тело отсчета, связанная с ним система координат и способ отсчета времени образуют систему отсчета. Положение материальной точки в пространстве определяется радиус-вектором . Радиус-вектор – это вектор, соединяющий начало системы координат с положением материальной точки в пространстве (рис. 1.1). Зависимость радиус-вектора от времени называется основным кинематическим уравнением движения .Проекции радиус-вектора на координатные оси определяют координаты тела x, y, z

, (1.1)

где единичные орты координат. Уравнения зависимости координат от времени определяют положение материальной точки в пространстве .

Если из этих уравнений исключить время t , мы получим уравнение траектории – линии, вдоль которой двигалось тело. Траектория – понятие относительное, форма траектория зависит от выбора системы отсчета. В зависимости от формы траектории движение может быть прямолинейным или криволинейным. Для рельсового транспорта траектория определяется расположением рельсов.

Параметрами поступательного движения материальной точки по траектории являются вектор перемещения и путь. Перемещение – это вектор, соединяющий начальную и конечную точки траектории (рис.1.1). Путь – это длина траектории или расстояние, проходимое телом от начала до конца движения. На рис 1.1 это длина пунктирной линии. Путь – величина скалярная и положительная. По величине путь и перемещение равны при прямолинейном движении в одном направлении или на бесконечно малом участке траектории.

Скорость

Быстрота изменения вектора перемещения во времени характеризуется скоростью. Мгновенная скорость это вектор, равный отношению бесконечно малого перемещения ко времени перемещения:

. (1.2)

То есть скорость равна первой производной от вектора перемещения по времени. Вектор мгновенной скорости, как и вектор перемещения , направлен по касательной к траектории в сторону движения.

Продифференцировав по времени уравнение (1.1) получим уравнение для вектора скорости через проекции на оси координат

, (1.3)

где , , . Модуль вектора скорости определяется по теореме Пифагора .

При бесконечно малом перемещении длина пути dS приближается к величине элементарного перемещения . Поэтому величина мгновенной скорости может быть определена также как первая производная от пути по времени

. (1.4)

Неравномерное движение тела с переменной по величине скоростью характеризуют средней скоростью

.(1.5)

По определению средняя скорость неравномерного движения равна отношению всего пути ко всему времени движения.

Ускорение

При движении тела скорость может быть не постоянна. Быстрота изменения скорости характеризуется ускорением. Ускорение,по определению, равно отношению бесконечно малого изменения вектора скорости ко времени dt этого изменения:

. (1.6)

То есть ускорение – это вектор­, равный первой производной от вектора скорости по времени. Через проекции вектора ускорения на декартовы оси координат , вектор полного ускорения равен . Величина полного ускорения по теореме Пифагора равна .

Кроме этого, принято представлять полное ускорение как векторную сумму составляющих ускорения на касательное и нормальное направление к траектории . Их называют соответственно касательным (тангенциальным) и нормальным (центростремительным) ускорениями. Величина полного ускорения равна .

Представим вектор скорости, который направлен по касательной, как произведения модуля скорости на единичный вектор касательной . Определим ускорение как первую производную от этого произведения по времени

. (1.7)

Первый член формулы характеризует изменение скорости по величине и определяет касательное ускорение . Второй член формулы определяет скорость поворота единичного вектора и характеризует изменение скорости по направлению. Это нормальное ускорение, которое направлено к центру кривизны траектории.

Выведем формулу нормального ускорения. Разложим вектор полного изменения скорости на составляющие: на нормаль и на касательную к траектории (рис. 1.2). При бесконечно малом перемещении дугу dS можно принять за отрезок. Заштрихованные равнобедренные треугольник расстояний и треугольник скоростей подобны, Условие подобия . Подставим сюда путь , получим

. (1.8)

Уравнения равнопеременного движения

Движение точки называется равнопеременным, если вектор ускорения постоянен.

Так как, исходя из определения ускорения, элементарное приращение скорости равно , то полное изменение вектора скорости за конечное время равно сумме элементарных приращений скорости, т.е. равно интегралу от ускорения по времени . Откуда скорость в момент времени t может быть определена по уравнению

. (1.9)

Элементарное изменение радиус-вектора точки, по определению скорости, равно . Полное изменение вектора перемещения за конечное время будет равно сумме элементарных приращений, то есть будет равно интегралу от вектора скоростипо времени . Откуда, радиус – вектор равен

(1.10)

Применим эти уравнения для вывода скорости и радиус-вектора точки при равнопеременном движении. Равнопеременное движение – это движение с постоянным по величине и по направлению ускорением. Например, полет тела в поле тяжести Земли с ускорением свободного падения g = 9,81 м/с 2 .

Получим уравнение для скорости. Для этого проинтегрируем уравнение (1.9) при постоянном векторе ускорения, , в результате получим

. (1.11)

Подставив формулу скорости (1.11) под знак интеграла для вектора перемещения, получим основное кинематическое уравнение равнопеременного движения

. (1.12)

При решении конкретных задач векторные уравнения (1.11) и (1.12) проецируют на выбранные оси координат и получают систему уже алгебраических уравнений для решения задачи.

Положение материальной точки в пространстве задается радиус-вектором

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

1. МЕХАНИКА


1.1. Кинематика


1.1.1. Краткие теоретические сведения

Положение материальной точки в пространстве задается

радиус-вектором ,

где – единичные векторы направлений (орты);

x, y, z – координаты точки (рис. 1.1.1).

Абсолютное значение радиус-вектора .

Кинематические уравнения движения :

(в векторной форме)

или (в координатной форме) , где t – время.

Уравнение траектории может быть получено из кинематических уравнений координат исключением времени.

Средняя скорость , где – перемещение материальной точки за время  t .

Средняя скалярная (путевая) скорость: , где – путь, пройденный точкой за время .

Мгновенная скорость , ,

где – проекции скорости на оси координат.

Абсолютное значение скорости .

Ускорение ,

где – проекции ускорения на оси координат.

Абсолютное значение ускорения .

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющей

. Абсолютное значение этих ускорений: ,

где R – радиус кривизны в данной точке траектории.

Путь где – модуль скорости; и – начальный и конечный моменты времени, соответствующие пройденному пути.

Перемещение ,

где – векторы, соответствующие начальному и конечному положениям материальной точки.

Кинематические уравнения равнопеременного движения ()

,

где – начальная скорость.

Положение твердого тела (при заданной оси вращения) определяется углом поворота (или угловым перемещением)  . Кинематическое уравнение вращательного движения  = f ( t ).

Средняя угловая скорость = / t ,

где  – изменение угла поворота за интервал времени  t . Мгновенная угловая скорость .

Угловое ускорение .

Кинематические уравнения равнопеременного вращения (  = const ) ,

где  0 – начальная угловая скорость.

Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами (рис. 1.1.3 и 1.1.4):

.

Рис. 1.1.3 Рис. 1.1.4

.1.2. Методические указания

В кинематике следует различать прямую и обратную задачи. В прямой задаче необходимо получить закон движения, если известны скорость, либо ускорение. В этих случаях используют формулы п. 1.1.1, предварительно проанализировав условие задачи. При анализе необходимо установить начальные условия и записать их в форме дополнительных уравнений. Начальные условия служат для определения констант интегрирования скорости или ускорения.

Систему координат необходимо выбирать в зависимости от условий задачи, чтобы математическое решение было упрощено. Во многих случаях этому требованию удовлетворяет декартова система координат.

Следует обратить внимание на то, что законы движения в координатной форме содержат не путь, проходимый движущимся телом, а только его координаты.

В обратных задачах задается закон движения, из которого скорость и ускорение находятся простым дифференцированием.

Как правило, закон движения удобно записывать либо в координатной форме, либо в векторной как изменение радиус-вектора материальной точки или центра масс системы в зависимости от координат и времени.

1.2. Динамика


1.2.1. Краткие теоретические сведения

Уравнение движения материальной точки (второй закон Ньютона)

в векторной форме , или при m = const , ,

где – векторная сумма внешних сил, действующих на материальную точку; m – масса; – ускорение;

– импульс; N – число внешних сил действующих на точку.

В координатной форме (скалярной): , , ,

где под знаком суммы стоят проекции сил на соответствующие оси координат.

C ила упругости ,

где – коэффициент упругости (жесткость в случае пружины); x – абсолютная деформация.

Сила гравитационного взаимодействия ,

где G – гравитационная постоянная;

и – массы взаимодействующих тел, рассматриваемых как материальные точки;

– расстояние между ними.

Сила трения скольжения ,

где  – коэффициент трения скольжения; N – сила нормальной реакции.

1.2.2. Методические указания

При решение задач данного раздела используются законы Ньютона. При этом особое внимание надо уделять анализу сил, действующих на рассматриваемое тело. Он должен включать: происхождение сил – в результате взаимодействия с каким телом возникла данная сила; природу сил – тяготение, упругость, трение; характер – от каких величин и как зависит данная сила.

Уравнение второго закона Ньютона следует записывать в векторной форме, а затем проецировать его на оси системы координат, выбранной в зависимости от условий задачи.

Законы Ньютона справедливы только для инерциальных систем отсчета. Почти во всех рассматриваемых задачах систему отсчета, связанную с Землей, можно считать инерциальной, если пренебрегать ее ускорением относительно системы неподвижных звезд. Отсюда вытекает ограничение в выборе системы отсчета: она не должна иметь ускорения относительно Земли.

При описании движения тел, связанных между собой, второй закон Ньютона целесообразно применять к каждому телу в отдельности, установив предварительно связь между координатами и кинематическими параметрами этих тел. При этом часто приходится накладывать дополнительные условия на характер связей.

1.3. Законы сохранения


1.3.1. Краткие теоретические сведения

1. Координаты центра масс системы материальных точек

; ; ,

где m – масса i — ой материальной точки; , , – ее координаты.

2. Закон сохранения импульса выполняется в замкнутой системе и записывается в виде: , где N – число материальных точек (или тел), входящих в систему.

3. Работа, совершаемая постоянной силой : ,

где  – угол между направлениями векторов силы и перемещения .

4. Мощность: , где – работа, совершаемая за промежуток времени .

5. Кинетическая энергия материальной точки (или тела, движущегося поступательно): .

6. Потенциальная энергия упруго деформированного тела (сжатой или растянутой пружины): , где – жесткость пружины, х – величина деформации.

7. Потенциальная энергия гравитационного взаимодействия двух материальных точек (или тел) массами m 1 и m 2 , находящихся на расстоянии r друг от друга: .

8. Потенциальная энергия тела, находящегося в однородном поле силы тяжести : , где h – высота тела над уровнем, принятым за начало отсчета потенциальной энергии.

9. Закон сохранения энергии в механик е выполняется в замкнутой системе, в которой действуют только консервативные силы, и записывается в виде: .

1.3.2. Методические указания

Используя законы сохранения (импульса, энергии), можно найти связь между параметрами движения тела (координатами, скоростями) или системы тел в различных состояниях. В некоторых случаях, когда характер сил взаимодействия (закон изменения силы со временем, время взаимодействия) неизвестен, только законы сохранения позволяют найти по известным параметрам (координаты, скорости) системы в одном состоянии ее параметры в другом состоянии. Подобная ситуация, в частности, имеет место при кратковременных взаимодействиях, таких как удар, взрыв и т. п.

Решение задачи необходимо начинать с анализа сил, действующих на каждое тело системы. Такой анализ должен показать, целесообразно ли рассматривать каждое тело в отдельности либо систему тел; возможно ли к выбранной системе применять тот или иной закон сохранения.

Закон сохранения импульса можно применять, строго говоря, только к замкнутым системам, т. е. к системам тел, на которые не действуют внешние силы (либо векторная сумма внешних сил равна нулю). Природа внутренних сил не является существенной, к числу этих сил могут, например, относиться и силы трения.

При составлении уравнений на основании закона сохранения импульса следует обращать внимание на то, что скорости всех рассматриваемых тел должны определяться относительно одной и той же системы отсчета, а также на векторный характер закона.

Использование закона сохранения полной механической энергии предполагает консервативность рассматриваемой системы. И это условие обязательно необходимо проверять.

Если энергия системы включает потенциальную энергию тел во внешнем консервативном поле, то можно говорить о законе сохранения энергии одного тела, находящегося во внешнем консервативном поле, в частности, в поле тяжести Земли. Подобное рассмотрение предполагает, что расчеты производятся в системе отсчета, связанной со вторым телом, в данном случае с Землей.

При определении изменения энергии следует обращать внимание на то, что изменение потенциальной энергии тела во внешнем консервативном поле равно работе сил поля, взятой с обратным знаком. Сама потенциальная энергия не может быть вычислена без предварительного выбора начала отсчета потенциальной энергии.

1.6. Элементы механики жидкостей

1.6.1. Краткие теоретические сведения и методические


указания к решению задач

Используется единый подход к изучению жидкостей и газов, т. к. в ряде механических явлений их поведение определяется одинаковыми параметрами и идентичными уравнениями. Поэтому пользуются единым термином «жидкость».

1. Давление жидкости – скалярная физическая величина, определяемая нормальной поверхностной силой, действующей со стороны жидкости на единицу площади:

, , , Па = Н/м 2 .

2. Закон Паскаля : жидкость (или газ) передает производимое на нее поверхностными силами внешнее давление по всем направлениям без изменения.

3 . Закон Архимеда : на тело, погруженное в жидкость (газ), действует со стороны жидкости направленная вверх сила, равная весу жидкости, объем которой совпадает с объемом погруженной в жидкость части тела:

, ,

где  – плотность жидкости, V – объем погруженной в жидкость части тела.

Жидкость, плотность которой с изменением давления не изменяется, называется несжимаемой.

4. Давление в жидкости .

– давление на свободной поверхности жидкости, часто оно равно атмосферному.

В точке А , погруженной в жидкость на высоту h , давление равно р (рис. 1.6.1) ,

где – гидростатическое давление.

6. Уравнение Бернулли для стационарного течения идеальной несжимаемой жидкости:

,

где – полное давление, р – статическое давление, – гидростатическое давление, – динамическое давление.

7. Идеальная жидкость – физическая абстракция – жидкость, в которой отсутствуют силы внутреннего трения.

Формула Торричелли , определяющая скорость истечения идеальной жидкости через малое отверстие в открытом широком сосуде:

,

где h – глубина, на которой находится отверстие относительно свободной поверхности жидкости в сосуде.

Контрольное задание состоит из двух частей:

1 часть – задания открытого типа, необходимо не только выбрать единственный правильный ответ, но и дать пояснение к его решению.

2 часть – задания закрытого типа, необходимо представить подробное решение.

1.1. Физическая теория объяснила все известные в данной области физики явления и предсказала существование новых, неизвестных ранее явлений. Каким образом эта теория может быть опровергнута?

1. Созданием новой теории, предсказывающей другие неизвестные явления.

2. Теория будет опровергнута, если при проведении эксперимента предсказанные ею новые явления не будут обнаружены.

А. Только 1. Б . Только 2. В . Или 1, или 2. Г . Ни 1,ни 2. Д . Такая теория не может быть опровергнута.

1.2. На горизонтально движущуюся ленту транспортера соскальзывают кирпичи. Скорость ленты транспортера относительно Земли , скорость кирпича векторы и направлены параллельно. Через какой промежуток времени кирпич станет непо­движным относительно ленты, если коэффициент трения кирпича о ленту равен ?

А . Б. В . Г . Д.

1.3. Цилиндрический сосуд высотой 40 см заполнен водой. В боковой стенке сосуда есть три отверстия. Первое отверстие находится на расстоянии 10 см, второе — на расстоянии 20 см и третье — на расстоянии 30 см от основания сосуда. Если сосуд заполнен водой до верха, то из какого отверстия струя достигнет поверхности, на которой стоит сосуд, в наибольшем удалении от стенки сосуда?

А . Из первого. Б. Из второго. В. Из третьего. Г . Из первого и третьего. Д. Из всех трех одинаково.

1.4. В какую фазу Луны приливы в земных океанах и морях достигают максимального значения?

А. Только в полнолуние. Б. Только в новолуние. В . В полнолуние и новолуние. Г . В первую и последнюю четверть. Д. Высота прилива не зависит от фаз Луны.

1.5. Какую примерно силу нужно приложить к малому поршню гидравлического подъемника для подъема автомобиля массой 1000 кг, если площадь малого поршня 10 см 2 , площадь большого поршня 0,1 м 2 ?

А. 100 кг. Б. 10 кг. В . 1000 Н. Г . 100 Н. Д. 10 6 Н.


источники:

http://lektsii.org/6-70014.html

http://gigabaza.ru/doc/64673.html