Вывод формул пересчета коэффициентов уравнений системы

Решение систем линейных уравнений методом Жордана-Гаусса

Разрешенная система уравнений

Уравнение имеет решение: если хотя бы один из коэффициентов при неизвестных отличен от нуля. В этом случае любой -мерный вектор называется решением уравнения, если при подстановке его координат уравнение обращается в тождество.

Общая характеристика разрешенной системы уравнений

Дать характеристику системе уравнений.

Решение:

1. Входит ли в состав системы линейных уравнений противоречивое уравнение? (Если коэффициенты , в этом случае уравнение имеет вид: и называется противоречивым.)

  • Если система содержит противоречивое, то такая система несовместна и не имеет решения

2. Найти все разрешенные переменные. (Неизвестная называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит (т.е. входит с коэффициентом, равным нулю).

  • В нашем примере неизвестная входит в первое уравнение с коэффициентом единица, во второе уравнение не входит, то есть является первой разрешенной .
  • Аналогично — содержится только во втором уравнении а только в первом.

3. Является ли система уравнений разрешенной? (Система уравнений называется разрешенной, если каждое уравнение системы содержит разрешенную неизвестную, среди которых нет совпадающих)

  • Наша система является разрешенной т.к. каждое уравнение содержит в себе разрешенные неизвестные )

Разрешенные неизвестные, взятые по одному из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. (в нашем примере это )

Разрешенные неизвестные, входящие в полный набор, называют также базисными ( ), а не входящие в набор — свободными ( ).

В общем случае разрешенная система уравнений имеет вид:

!На данном этапе главное понять что такое разрешенная неизвестная (входящая в базис и свободная).

Общее Частное Базисное решения

Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:

Частным решением системы уравнений называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.

  • Базисное решение (вектор) называется вырожденным, если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
  • Базисное решение называется невырожденным, если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Теорема (1)

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

Решение:

1. Проверяем является ли система разрешенной?

  • Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)

2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения.

  • В нашем случае мы можем включить в набор разрешенных неизвестных из первого уравнения — и , а из второго уравнения только . То есть набор может состоять из ( ) или ( ).

3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор.

  • допустим мы включили в набор неизвестные и , тогда общее решение будет выглядеть так:

4. Находим частное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.

  • Пусть , , , тогда из общего решения находим:

Ответ: частное решение (один из вариантов)

5. Находим базисное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.

  • , то из общего решения получаем , и базисное решение:

Элементарные преобразования линейных уравнений

Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.

Теорема (2)

Если какое-либо уравнение системы умножить на некоторое отличное от нуля число, а остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)

Теорема (3)

Если к какому-либо уравнению системы прибавить другое, а все остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)

Следствие из Теорем (2 и 3)

Если к какому-либо уравнению прибавить другое, умноженное на некоторое число, а все остальные уравнения оставить без изменения, то получится система, равносильная данной.

Формулы пересчета коэффициентов системы

Если у нас есть система уравнений и мы хотим преобразовать ее в разрешенную систему уравнений в этом нам поможет метод Жордана-Гаусса.

Преобразование Жордана с разрешающим элементом позволяет получить для системы уравнений разрешенную неизвестную в уравнении с номером . (пример 2).

Преобразование Жордана состоит из элементарных преобразований двух типов:

  1. Уравнение с разрешающим элементом делится на этот элемент (умножается на )
  2. Уравнение с разрешающим элементом умножается на подходящие множители и прибавляется ко всем другим уравнениям для того, чтобы исключить неизвестную .

Допустим мы хотим сделать неизвестную в нижнем уравнении разрешенной неизвестной. Для этого мы должны разделить на , так чтобы сумма .

Пример 2 Пересчитаем коэффициенты системы

При делении уравнения с номером на , его коэффициенты пересчитываются по формулам:

Чтобы исключить из уравнения с номером , нужно уравнение с номером умножить на и прибавить к этому уравнению.

Теорема (4) О сокращении числа уравнений системы.

Если система уравнений содержит тривиальное уравнение, то его можно исключить из системы, при этом получится система равносильная исходной.

Теорема (5) О несовместимости системы уравнений.

Если система уравнений содержит противоречивое уравнение, то она несовместна.

Алгоритм метода Жордана-Гаусса

Алгоритм решения систем уравнений методом Жордана-Гаусса состоит из ряда однотипных шагов, на каждом из которых производятся действия в следующем порядке:

  1. Проверяется, не является ли система несовместной. Если система содержит противоречивое уравнение, то она несовместна.
  2. Проверяется возможность сокращения числа уравнений. Если в системе содержится тривиальное уравнение, его вычеркивают.
  3. Если система уравнений является разрешенной, то записывают общее решение системы и если необходимо — частные решения.
  4. Если система не является разрешенной, то в уравнении, не содержащем разрешенной неизвестной, выбирают разрешающий элемент и производят преобразование Жордана с этим элементом.
  5. Далее заново переходят к пункту 1

Пример 3 Решить систему уравнений методом Жордана-Гаусса.

Найти: два общих и два соответствующих базисных решения

Решение:

Вычисления приведены в нижеследующей таблице:

Справа от таблицы изображены действия над уравнениями. Стрелками показано к какому уравнению прибавляется уравнение с разрешающим элементом, умноженное на подходящий множитель.

В первых трех строках таблицы помещены коэффициенты при неизвестных и правые части исходной системы. Результаты первого преобразования Жордана с разрешающим элементом равным единице приведены в строках 4, 5, 6. Результаты второго преобразования Жордана с разрешающим элементом равным (-1) приведены в строках 7, 8, 9. Так как третье уравнение является тривиальным, то его можно не учитывать.

Равносильная система с разрешенными неизвестными и имеет вид:

Теперь можем записать Общее решение:

Приравниваем свободные переменные и нулю и получаем: .

Базисное решение:

Для того чтобы найти второе общее и соответствующее ему базисное решение, в полученной разрешенной системе в каком-либо уравнении необходимо выбрать какой-либо другой разрешающий элемент. (дело в том, что линейное уравнение может содержать несколько общих и базисных решений). Если разрешенная система уравнений, равносильная исходной системе содержит неизвестных и уравнений, то число общих и соответствующих базисных решений исходной системы равно числу сочетаний и . Количество сочетаний можно вычислить по формуле:

В нашем случае выбран разрешающий элемент (-1) в первом уравнении при (строка 7). Далее производим преобразование Жордана. Получаем новую разрешенную систему (строки 10,11) c новыми разрешенными неизвестными и :

Записываем второе общее решение:

И соответствующее ему базисное решение:

Метод Жордана-Гаусса для решения СЛАУ

В данной статье мы рассмотрим метод Жордана-Гаусса для решения систем линейных уравнений, отличие метода Гаусса от метода Жордана-Гаусса, алгоритм действий, а также приведем примеры решений СЛАУ.

Основные понятия

Метод Жордана-Гаусса — один из методов, предназначенный для решения систем линейных алгебраических уравнений.

Этот метод является модификацией метода Гаусса — в отличие от исходного (метода Гаусса) метод Жордана-Гаусса позволяет решить СЛАУ в один этап (без использования прямого и обратного ходов).

Матричная запись СЛАУ: вместо обозначения А в методе Жордана-Гаусса для записи используют обозначение Ã — обозначение расширенной матрицы системы.

Решить СЛАУ методом Жордана-Гаусса:

4 x 1 — 7 x 2 + 8 x 3 = — 23 2 x 1 — 4 x 2 + 5 x 3 = — 13 — 3 x 1 + 11 x 2 + x 3 = 16

Записываем расширенную матрицу системы:

à = 4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16

Напоминаем, что слева от черты записывается матрица системы А :

A = 4 — 7 8 2 — 4 5 — 3 11 1

На каждом шаге решения необходимо выбирать разрешающие элементы матрицы. Процесс выбора может быть различным — в зависимости от того, как выбираются элементы, решения будут отличаться. Можно выбирать в качестве разрешающих элементов диагональные элементы матрицы, а можно выбирать произвольно.

В этой статье мы покажем оба способа решения.

Произвольный способ выбора разрешающих элементов

  • Первый этап:

Следует обратиться к 1-му столбцу матрицы Ã — необходимо выбрать ненулевой (разрешающий) элемент.

В 1-ом столбце есть 3 ненулевых элемента: 4, 2, -3. Можно выбрать любой, но, по правилам, выбирается тот, чей модуль ближе всего к единице. В нашем примере таким числом является 2.

Цель: обнулить все элементы, кроме разрешающего, т.е. необходимо обнулить 4 и -3:

4 — 7 8 2 — 4 5 — 3 11 1

Произведем преобразование: необходимо сделать разрешающий элемент равным единице. Для этого делим все элементы 2-ой строки на 2. Такое преобразование имеет обозначение: I I : 2 :

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16

Теперь обнуляем остальные элементы: 4 и -3:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I

Необходимо выполнить преобразования:

I — 4 × I I и I I I — ( — 3 ) × I I = I I I + 3 × I I

Запись I — 4 × I I означает, что от элементов 1-ой строки вычитаются соответствующие элементы 2-ой строки, умноженные на 4.

Запись I I I + 3 × I I означает, что к элементам 3-ей строки прибавляются соответствующие элементы 2-ой строки, умноженные на 3.

I — 4 × I I = 4 — 7 8 — 23 — 4 1 — 2 5 / 2 — 13 / 2 = = 4 — 7 8 — 23 — 4 — 8 10 — 26 = 0 1 — 2 3

Записываются такие изменения следующим образом:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2

Необходимо обнулить 2-ой столбец, следовательно, нужно выбрать разрешающий элемент: 1, -2, 5. Однако 2-ую строку матрицы мы использовали в первом этапе, так что элемент -2 не может быть использован.

Поскольку необходимо выбирать число, чей модуль ближе всего к единице, то выбор очевиден — это 1. Обнуляем остальные элементы 2-го столбца:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I + 2 × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

Теперь требуется обнулить элементы 3-го столбца. Поскольку первая и вторая строки уже использованы, поэтому остается только один вариант: 37 / 2 . Обнуляем с его помощью элементы третьего столбца:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

I — ( — 2 ) × I I I = I + 2 × I I I и I I — ( — 3 2 ) × I I I = I I + 3 2 × I I

получим следующий результат:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I →

→ 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1 .

Выбор разрешающих элементов на главной диагонали матрицы системы

Принцип выбора разрешающих элементов строится на простом отборе соответствующих элементов: в 1-ом столбце выбирается элемент 1-го столбца, во 2-ом — второй, в 3-ем — третий и т.д.

  • Первый этап

В первом столбце необходимо выбрать элемент первой строки, т.е. 4. Но поскольку в первом столбце есть число 2, чей модуль ближе к единице, чем 4, то можно поменять местами первую и вторую строку:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 → 2 — 4 5 | — 13 4 — 7 8 | — 23 — 3 11 1 | 16

Теперь разрешающий элемент — 2. Как показано в первом способе, делим первую строку на 2, а затем обнуляем все элементы:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 1 — 2 5 / 2 | — 13 / 2 0 1 — 2 | 3 0 5 17 / 2 | — 7 / 2

На втором этапе требуется обнулить элементы второго столбца. Разрешающий элемент — 1, поэтому никаких изменений производить не требуется:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

На третьем этапе необходимо обнулить элементы третьего столбца. Разрешающий элемент — 37/2. Делим все элементы на 37/2 (чтобы сделать равными 1), а затем обнуляем:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Решить СЛАУ методом Жордана-Гаусса:

3 x 1 + x 2 + 2 x 3 + 5 x 4 = — 6 3 x 1 + x 2 + 2 x 4 = — 10 6 x 1 + 4 x 2 + 11 x 3 + 11 x 4 = — 27 — 3 x 1 — 2 x 2 — 2 x 3 — 10 x 4 = 1

Записать расширенную матрицу данной системы Ã :

3 1 2 5 | — 6 3 1 0 2 | 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1

Для решения используем второй способ: выбор разрешающих элементов на главной диагонали системы. На первом этапе выбираем элемент первой строки, на втором — второй строки, на третьем — третьей и т.д.

Необходимо выбрать разрешающий элемент первой строки, т.е. 3. Затем обнуляем все элементы столбца, разделяя на 3 все элементы:

3 1 2 5 | — 6 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I ÷ 3 → 1 1 / 3 2 / 3 5 / 3 | — 2 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I I — 3 × I I I I — 6 × I I V + 3 × I →

→ 1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5

Необходимо обнулить элементы второго столбца. Для этого выделяем разрешающий элемент, но элемент первой строки второго столбца равен нулю, поэтому необходимо менять строки местами.

Поскольку в четвертой строке есть число -1, то меняем местами вторую и четвертую строки:

1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5 → 1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4

Теперь разрешающий элемент равен -1. Делим элементы второго столбца на -1, а затем обнуляем:

1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I I ÷ ( — 1 ) → 1 1 / 3 2 / 3 5 / 3 | — 2 0 1 0 5 | 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I — 1 / 3 × I I I I I — 2 × I →

→ 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4

На третьем этапе необходимо также обнулить элементы третьего столбца. Для этого находим разрешающий элемент в третьей строке — это 7. Но на 7 делить неудобно, поэтому необходимо менять строки местами, чтобы разрешающий элемент стал -2:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4 → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25

Теперь делим все элементы третьего столбца на -2 и обнуляем все элементы:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25 I I I ÷ ( — 2 ) → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 9 | — 25 I — 2 / 3 × I I I I V — 7 × I I I →

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39

Обнуляем четвертый столбец. Разрешающий элемент — — 39 2 :

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39 I V ÷ ( — 39 2 ) → 1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 1 | 2 I + I V I I — 5 × I V I I I — 3 / 2 × I V →

→ 1 0 0 0 | — 3 0 1 0 0 | — 5 0 0 1 0 | — 1 0 0 0 1 | 2 .

Ответ: x 1 = — 3 ; x 2 = — 5 ; x 3 = — 1 ; x 4 = 2

Метод Жордана Гаусса

Содержание:

Метод Жордана Гаусса

Суть метода Жордана-Гаусса заключается в построении такой ступенчатой матрицы, вдоль главной диагонали которой будут стоять лишь одни единицы.

Затем, не производя обратного хода, как это было сделано в методе Гаусса, нужно продолжать элементарными преобразованиями снизу вверх обращать в нули элементы, стоящие над главной диагональю, до тех пор, пока слева до черты в расширенной матрице не будет стоять единичная матрица.

Тогда справа получим решение системы уравнений.

Это один из самых простых и изящных способов решения систем линейных уравнений.

Примеры с решением

Пример 1:

Решить систему уравнений методом Жорда-на-Гаусса:

Решение:

Расширенная матрица системы имеет вид:

Преобразуем первый столбец: в результате получим

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Теперь работаем с нижней строкой, содержащей единицу в четвертом столбце, и с ее помощью «обнуляем» весь столбец. Не забываем выполнять действия со строчкой, содержащей не четыре, а пять элементов.

Возможно вам будут полезны данные страницы:

Справа получили столбец решений. Таким образом: Метод Жордана-Гаусса вычисления обратной матрицы. Используя метод Жордана-Гаусса, можно вычислять обратные матрицы менее трудоемким способом, чем через алгебраические дополнения. Возьмем нашу обычную квадратную матрицу и припишем к ней справа единичную матрицу той же размерности:

Элементарными преобразованиями над строками, используя алгоритм метода Жордана-Гаусса, приведем левую часть к единичной матрице:

Матрица полученная справа, и будет обратной к

Пример 2:

Найти обратную матрицу к матрице

Решение:

Припишем справа к матрице единичную матрицу той же размерности и применим к полученной двойной матрице преобразования над строками: Сделав проверку, получим

Метод Жордана-Гаусса 1. Система из га линейных уравнений с п неизвестными в общем случае записывается так:

(1) Коэффициенты и свободные члены — заданные действительные числа. Первый индекс в записи обозначает номер уравнения, второй — — номер неизвестной.

Решить систему (1) — значит найти все ее решения, т.е. все такие наборы чисел которые при подстановке во все уравнения системы превращают их в верные равенства, или доказать, что решений нет.

Система (1) называется:

  • совместной, если она имеет хотя бы одно решение;
  • определенно совместной, если она имеет только одно решение;
  • неопределенно совместной, если она имеет более одного решения;
  • несовместной, если она не имеет ни одного решения. 2°. Две системы называются равносильными, если они имеют одинаковые решения или обе несовместны. Переход от одной системы к равносильной осуществляется при помощи множества элементарных преобразований:
  • умножение обеих частей любого уравнения на отличное от нуля число;
  • прибавление к одному из уравнений произвольного другого, умноженного на любое число;
  • удаление (вычеркивание) из системы тривиального уравнения — если в системе имеются два или более уравнений с пропорциональными коэффициентами, то сохранить нужно только одно из них.

Уравнение не имеет решений. Оно называется противоречивым. Система, содержащая такое уравнение, сама противоречива, т.е. несовместна. 3. Один шаг метода Жордана-Гаусса состоит в приведении системы (1) к виду

(2) в котором одна неизвестная сохранена с коэффициентом 1 только в уравнении, а из остальных исключена. Систему (2) назовем разрешенной относительно неизвестной поскольку ее легко выразить через остальные неизвестные данной системы. Для того, чтобы получить систему (2), требуется следующее:

1) коэффициент при в уравнении с номером р должен быть отличен от нуля; в дальнейшем назовем ведущим, или разрешающим коэффициентом, а уравнение — ведущим уравнением;

2) уравнение надо разделить на

3) для получения нулевых коэффициентов при в остальных уравнениях следует из уравнения вычесть ведущее уравнение, сначала разделенное на а затем домноженное на Тогда все остальные коэффициенты преобразуются по формулам

Эти формулы будем называть формулами Жордана-Гаусса.

Расчет по ним удобно выполнять, пользуясь мнемоническим правилом прямоугольника, наглядно показанным на следующих диаграммах:

На втором шаге сохраним с коэффициентом 1 другую неизвестную в другом уравнении, исключая из остальных. Через шагов систему (1) можно привести к системе, состоящей из г уравнений (остальные тривиальных уравнений, если такие были, отброшены) и содержащей разрешенных неизвестных.

Эти г неизвестных назовем базисными (используя векторную терминологию, которая появится позже), остальные — свободными, или независимыми.

Основная часть метода Жордана-Гаусса завершена. Если то система разрешена относительно всех неизвестных, т.е. однозначно совместна. Если то, выражая базисные (зависимые) неизвестные через свободные (независимые), получаем «общее» решение системы в соответствующем базисе, которое впоследствии следует параметризовать и из которого можно получать различные частные решения, в том числе базисное (так называется решение, соответствующее нулевому набору свободных неизвестных).

Заметим, что «общее» решение определяется неоднозначно, оно зависит от того, какие неизвестные являются свободными (независимыми, произвольными), а какие — зависимыми (базисными).

Метод Жордана-Гаусса удобно реализовать в виде таблицы, которую назовем таблицей Гаусса. Каждый ее блок содержит результат одного преобразования или одну итерацию. Столбец блока таблицы, состоящий из нулей и одной единицы, будем называть единичным столбцом. Цель преобразований Жордана-Гаусса — получить единичных столбцов. Неизвестные, соответствующие единичным столбцам, являются базисными, остальные — свободными. Последний блок таблицы изображает систему, разрешенную относительно базисных неизвестных.

Примеры с решениями

Пример 3:

Решить линейную систему

Решение:

Имеем Первый блок таблицы Гаусса данной системы имеет вид («св. ч.» означает «свободные члены» уравнений системы, вертикальная черта соответствует знакам равенства): Выполним первую итерацию, т.е. получим первый единичный столбец, выбирая в качестве ведущего коэффициента (в таблице он обведен кружком).

Для этого над строками таблицы (над уравнениями системы) выполним следующие действия (они обозначены справа от таблицы):

1) первую строку сохраняем (переписываем);

2) первую строку, умноженную на 2, прибавим ко второй;

3) первую строку, умноженную на -2, прибавим к третьей;

4) первую строку прибавим к четвертой. Получаем второй блок таблицы:

Приведем к единичному третий столбец, в нем уже имеется один нуль. Ведущий коэффициент обведен кружком.

1) вторую строку, умноженную на 3, прибавим к первой и запишем вместо первой строки;

2) перепишем вторую строку без изменения;

3) вторую строку, умноженную на —1, прибавим к третьей;

4) четвертую строку перепишем без изменения. Эти действия выражаются числами и стрелками, показанными справа от второго блока таблицы.

Третий блок таблицы имеет вид:

Следующая итерация заключается в получении третьего единичного столбца. Для этого примем в качестве ведущего коэффициента и выполним следующие действия: третью строку, умноженную на —5, -1, -2, прибавим к первой, второй и четвертой строкам соответственно. Третью строку переписываем без изменений.

Получаем четвертый блок:

4. Наконец, последнюю итерацию выполним, выбирая в качестве ведущего коэффициента Четвертую строку разделим на -3. Остальные действия очевидны. Получаем: После четырех итераций получили таблицу, соответствующую системе, разрешенной относительно всех неизвестных Запишем это также в виде: Система определенно совместна. Примечание. Подставьте эти значения неизвестных в данную систему и убедитесь, что получаются верные числовые равенства.

Пример 4:

Решить линейную систему

Решение:

Каждый раз в качестве ведущего будем принимать простейший коэффициент, т.е. либо 1, либо — 1.

Подчеркнем, что цель преобразований заключается в получении нулей в ведущем столбце. Как получить нулевые коэффициенты в единичном столбце, видно из решения примера 1. Для этого ведущую строку надо умножить на надлежащие числа (иногда на 1 или -1) и прибавить к остальным строкам, не содержащим 0 в этом ведущем столбце. Поэтому ограничимся выделением в каждом блоке ведущего коэффициента, не комментируя сами преобразования и не указывая соответствующие числа со стрелками.

Результаты вычислений поместим в единую таблицу Гаусса, которая имеет следующий вид:

Последние две строки удалены как нулевые (они соответствуют тривиальным уравнениям). Из последнего блока таблицы получаем систему выражающую «почти» общее решение исходной системы.

Смысл слова «почти» заключается в неравноправном участии неизвестных. Положим — произвольные постоянные или параметры).

Тогда система

представляет общее решение системы в параметрическом виде. Все неизвестные выражены (равноправно) через два параметра

Решения, получаемые из общего при фиксированных значениях параметров называются частными. Например, при получаем: При получаем Базисное решение соответствует нулевому набору свободных переменных: если Ответ запишем так:

Пример 5:

Решить систему уравнений

Решение:

Вместо таблицы Гаусса будем использовать другую, более компактную интерпретацию ее блоков. Вертикальная черта в блоках соответствует знакам равенства в уравнениях системы. Знак

(читается «тильда») между двумя соседними блоками означает, что системы, соответствующие этим блокам, равносильны.

Имеем:

единичный столбец второго блока получен в результате умножения первой строки на) -3, -3, -1, -4 и последующего прибавления ко второй, третьей, четвертой и строкам соответственно; во втором блоке произвели почленное деление четвертой и ( (.пятой строк на 3 и -3, т. е. сокращение уравнений)

Вторая и третья строки четвертого блока отброшены как пропорциональные пятой. Заметим, что выделение ведущего (разрешающего) элемента однозначно определяет действия по обнулению элементов ведущего столбца, поэтому мы отказались от применения чисел и стрелок, обозначающих действия над строками блока. Последний блок изображает систему, состоящую из трех уравнений с четырьмя неизвестными Соответствующая система приведена к трем базисным неизвестным; разрешая ее относительно этих неизвестных, получаем

Положим Тогда общее р базисное решения принимают вид соответственно: Заметим, что переменную нельзя получить среди свободных (свободная переменная может принимать любые значения, тогда как ).

Пример 6:

Решить систему уравнений

Решение:

В предыдущих примерах преобразования Жордана-Гаусса свелись к действиям над уравнениями системы, или строками таблицы, потому что все ведущие коэффициенты были равны 1. Если же ведущие коэффициенты отличны от 1, то действия над строками могут вызывать затруднения, и в таких случаях следует пользоваться формулами преобразования Жордана-Гаусса, т.е. правилом прямоугольника. С целью экономии места решение этой системы приведем также в блоковой записи:

(последняя строка пропорциональна первой, поэтому она удалена). Подчеркнем, что цель наших преобразований состоит в получении единичных столбцов. Приведем примеры применения правила прямоугольника в третьем блоке.

При этом одна из вершин каждого прямоугольника должна совпасть с ведущим элементом противоположная вершина — с элементом, подлежащим пересчету:

Из последнего блока получаем общее решение системы в базисе При

Метод Гаусса (усеченный метод Жордана-Гаусса) допускает получение в очередном блоке таблицы Гаусса столбца, отличного от единичного, т.е. неизвестную не обязательно исключать из всех уравнений, кроме одного.

В этом случае говорят о приведении системы уравнений к ступенчатому виду. Это важно в смысле экономии времени, когда коэффициенты системы «неудобные», особенно, если система окажется неразрешимой.

Пример 7:

Решить систему уравнений .

Решение:

Нули в столбцах будем получать только под диагональю соответствующей матрицы.

Последняя строка выражает противоречивое уравнение — система несовместна.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/metod-zhordana-gaussa/

http://natalibrilenova.ru/metod-zhordana-gaussa/