Вывод канонического уравнения двуполостного гиперболоида

6.6. Гиперболоиды

Их тоже два, и это тоже нечастые гости в массовой практике:

Однополостной гиперболоид

имеет каноническое уравнение , числа называют полуосями гиперболоида. Если его рассекать плоскостями , то будут получаться эллипсы: , которые неограниченно увеличиваются, когда мы уходим по оси вверх или вниз к бесконечности. Эллипс, лежащий в плоскости : называется горловым эллипсом, он самый маленький и хорошо просматривается на чертеже.

Если рассекать поверхность плоскостями, параллельными плоскостям , то в сечениях будут получаться гиперболы:

и эти гиперболы хорошо видны на поверхности. А посему и «гиперболоид».

Однополостной гиперболоид симметричен относительно всех координатных плоскостей, осей и начала координат.

Если , то мы имеем дело с гиперболоидом вращения: – он получен вращением гиперболы вокруг оси . Горизонтальные же сечения представляют собой окружности, в чём мы убедимся на конкретном примере:

Задача 182

Построить тело, ограниченное поверхностями

Решение: найдём пересечение гиперболоида с плоскостью : горловая окружность радиуса 1. Найдём пересечение с плоскостью :
– окружность с центром в точке радиуса .

Изобразим на чертеже обе окружность и соединим их направляющими – 4 ветвями гиперболы.

Такой вот получился симпатичный горшок. …А вверху у меня чертёж, к слову, ассоциируется с унитазом 🙂

Двуполостной гиперболоид

имеет похожее каноническое уравнение . Поверхность представляет собой 2 бесконечные чаши с вершинами :

Для двуполостного гиперболоида справедливы почти все утверждения, что и для однополостного. Горизонтальные сечения плоскостями представляют собой эллипсы, а вертикальные – гиперболы. Но, естественно, тут нет горлового эллипса. Однако в плане симметрии всё так же.

Вообще, оба типа поверхностей можно назвать эллиптическими гиперболоидами, но это название не учитывает различие между ними. И поэтому их различают по количеству полостей – у предыдущего одна полость, а у этого – две.

И да, частный случай: – есть гиперболоид вращения.

Следующее задание для самостоятельного решения:

Задача 183

Построить тело, ограниченное поверхностями

С поверхностями всё! Теперь пару ласковых о координатах.

Как вы заметили, во всех случаях у нас фигурировала прямоугольная система координат, но в некоторых задачах бывают выгодны другие системы:

Гиперболоиды: однополостный и двуполостный

Определение гиперболоида

Однополостным гиперболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

Двуполостным гиперболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

В уравнениях (4.48), (4.49) — положительные параметры, характеризующие гиперболоиды, причем .

Начало координат называют центром гиперболоида. Точки пересечения гиперболоида с координатными осями называются его вершинами. Это четыре точки однополостного гиперболоида (4.48) и две точки двуполостного гиперболоида (4.49). Три отрезка координатных осей, соединяющих вершины гиперболоидов, называются осями гиперболоидов. Оси гиперболоидов, принадлежащие координатным осям , называются поперечными осями гиперболоидов, а ось, принадлежащая оси аппликат , — продольной осью гиперболоидов. Числа , равные половинам длин осей, называются полуосями гиперболоидов.

Плоские сечения однополостного гиперболоида

Подставляя в уравнение (4.48), получаем уравнение линии пересечения однополостного гиперболоида с координатной плоскостью . Это уравнение в плоскости определяет эллипс, который называется горловым. Линии пересечения однополостного гиперболоида с другими координатными плоскостями являются гиперболами. Они называются главными гиперболами. Например, при получаем главную гиперболу , а при — главную гиперболу

Рассмотрим теперь сечение однополостного гиперболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.48), получаем

При любом значении параметра уравнение определяет эллипс с полуосями . Следовательно, сечение однополостного гиперболоида плоскостью представляет собой эллипс, центр которого лежит на оси аппликат, а вершины — на главных гиперболах. Среди всех эллипсов, получающихся в сечениях плоскостями при различных значениях параметра , горловой эллипс (при ) является эллипсом с наименьшими полуосями.

Таким образом, однополостный гиперболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных гиперболах (рис.4.42,а)

Плоские сечения двуполостного гиперболоида

Сечения двуполостного гиперболоида координатными плоскостями и представляют собой гиперболы (главные гиперболы).

Рассмотрим теперь сечения двуполостного гиперболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.49), получаем

При уравнение не имеет действительных решений (правая часть уравнения отрицательная, а левая неотрицательная), т.е. плоскость не пересекает двуполостный гиперболоид. При уравнение имеет нулевое решение . Следовательно, плоскости касаются двуполостного гиперболоида в его вершинах . При c» png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAg0KoBP0QXdEhwHEx4v6hyb4AAADaSURBVCjPY2DAD/ZAae4D2GSFGBiqlgNpRgUcsofD8ckyh+GT5W2Ay1piyk4VgMtOXoQhW1q9WAFm8uTlMAn2VWZgWdMm5gtweye3Q2i25mkXwbJXJzDGIFyVCJHOaGAMBMlyBjIwByC5OfEiiBQtYFMAybKHM7AaIMmmN4LIUKirgN49ugHJ5O4EEBUFleVtYBHNMYDJToS6KpiBgRMkmyrAsIL5AMxHUEkGCwY2c5CsqgLDXnOM0MhaaAx2FQ/QjASILJsRIpiSEiBhBQY4Y4Fs2U2wlINFFgCrpSqpbSiUhgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> получаем уравнение эллипса с полуосями . Следовательно, сечение двуполостного гиперболоида плоскостью при c» png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAg0KoBP0QXdEhwHEx4v6hyb4AAADaSURBVCjPY2DAD/ZAae4D2GSFGBiqlgNpRgUcsofD8ckyh+GT5W2Ay1piyk4VgMtOXoQhW1q9WAFm8uTlMAn2VWZgWdMm5gtweye3Q2i25mkXwbJXJzDGIFyVCJHOaGAMBMlyBjIwByC5OfEiiBQtYFMAybKHM7AaIMmmN4LIUKirgN49ugHJ5O4EEBUFleVtYBHNMYDJToS6KpiBgRMkmyrAsIL5AMxHUEkGCwY2c5CsqgLDXnOM0MhaaAx2FQ/QjASILJsRIpiSEiBhBQY4Y4Fs2U2wlINFFgCrpSqpbSiUhgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> представляет собой эллипс с центром на оси аппликат, вершины которого лежат на главных гиперболах.

Таким образом, двуполостный гиперболоид можно представить как поверхность образованную эллипсами, вершины которых лежат на главных гиперболах (рис.4.43,а).

Гиперболоиды вращения

Гиперболоид, у которого поперечные полуоси равны , называется гиперболоидом вращения . Такой гиперболоид является поверхностью вращения, а его сечения плоскостями (для двуполостного гиперболоида при c» png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAg0KoBP0QXdEhwHEx4v6hyb4AAADaSURBVCjPY2DAD/ZAae4D2GSFGBiqlgNpRgUcsofD8ckyh+GT5W2Ay1piyk4VgMtOXoQhW1q9WAFm8uTlMAn2VWZgWdMm5gtweye3Q2i25mkXwbJXJzDGIFyVCJHOaGAMBMlyBjIwByC5OfEiiBQtYFMAybKHM7AaIMmmN4LIUKirgN49ugHJ5O4EEBUFleVtYBHNMYDJToS6KpiBgRMkmyrAsIL5AMxHUEkGCwY2c5CsqgLDXnOM0MhaaAx2FQ/QjASILJsRIpiSEiBhBQY4Y4Fs2U2wlINFFgCrpSqpbSiUhgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />) представляют собой окружности с центрами на оси аппликат. Однополостный или двуполостный гиперболоиды можно получить, вращая вокруг оси гиперболу (рис.4.42,б) или сопряженную гиперболу (рис.4.43,б) соответственно. Заметим, что уравнение последней можно записать в форме .

Гиперболоид, у которого поперечные оси различны , называется трехосным (или общим).

1. Плоскости определяют в пространстве основной прямоугольный параллелепипед , вне которого находится двуполостный гиперболоид (рис.4.43,в). Две грани параллелепипеда касаются гиперболоида в его вершинах.

2. Сечение однополостного гиперболоида плоскостью, параллельной оси аппликат и имеющей одну общую точку с горловым эллипсом (т.е. касающейся его), представляет собой две прямые, пересекающиеся в точке касания. Например, подставляя в уравнение (4.48), получаем уравнение двух пересекающихся прямых (см. рис.4.42,а).

3. Однополостный гиперболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (см. рис.4.42,в). Например, однополостный гиперболоид вращения можно получить, вращая прямую вокруг другой прямой, скрещивающейся с ней (но не перпендикулярной).

4. Начало канонической системы координат является центром симметрии гиперболоида, координатные оси — осями симметрии гиперболоида, координатные плоскости — плоскостями симметрии гиперболоида.

В самом деле, если точка принадлежит гиперболоиду, то точки с координатами при любом выборе знаков также принадлежат гиперболоиду, поскольку их координаты удовлетворяют уравнению (4.48) или (4.49) соответственно.

Свойства поверхностей второго порядка

СВОЙСТВА ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА

В данном приложении будут рассмотрены основные свойства поверхностей этих типов.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида

, называется эллипсоидом.

1°. Эллипсоид — ограниченная поверхность, поскольку из его канонического уравнения следует, что .

2°. Эллипсоид обладает:

— центральной симметрией относительно начала координат;

— осевой симметрией относительно координатных осей;

— плоскостной симметрией относительно координатных плоскостей.

3°. В сечении эллипсоида плоскостью, ортогональной любой из осей координат, получается эллипс. Например, рассматривая секущую плоскость , где , получаем следующее уравнение линии сечения

,

являющейся эллипсом. (Рис.1.)

z

Рисунок 1.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется эллиптическим параболоидом.

Свойства эллиптического параболоида:

1°. Эллиптический параболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что и принимает сколь угодно большие значения.

2°. Эллиптический параболоид обладает

— осевой симметрией относительно оси ;

— плоскостной симметрией относительно координатных плоскостей и .

3°. В сечении эллиптического параболоида плоскостью, ортогональной оси , получается эллипс, а плоскостями, ортогональными осям или парабола. Например, рассматривая секущую плоскость , получаем следующее уравнение плоской линии

,

являющейся эллипсом. (Рис.2.) С другой стороны, сечение плоскостью приводит к уравнению линии

,

являющейся параболой. Для случая сечения плоскостью уравнение сечения имеет аналогичный вид.

.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется гиперболическим параболоидом.

Свойства гиперболического параболоида:

1°. Гиперболический параболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что — любое.

2°. Гиперболический параболоид обладает

— осевой симметрией относительно оси ;

— плоскостной симметрией относительно координатных плоскостей и .

3°. В сечении гиперболического параболоида плоскостью, ортогональной оси координат , получается гипербола, а плоскостями ортогональными осям или — парабола. (Рис. 3)

Например, рассматривая секущую плоскость z=z0>0 , получаем следующее уравнение линии сечения

,

являющейся гиперболой. При уравнение гиперболы будет иметь вид:

.

Рисунок 3.

С другой стороны, при сечении гиперболического параболоида плоскостью x=x0 получаем плоскую кривую , являющуюся параболой. Для случая сечения плоскостью уравнение аналогично и имеет вид .

Из полученных уравнений следует, что гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.

4°. Гиперболический параболоид имеет два семейства прямолинейных образующих.

Если записать уравнение данной поверхности в виде , то можно прийти к заключению, что при любых значениях параметра a точки, лежащие на прямых и , также принадлежат и гиперболическому параболоиду, поскольку почленное перемножение уравнений плоскостей, задающих эти прямые, дает уравнение гиперболического параболоида.

Заметим, что для каждой точки гиперболического параболоида, существует пара прямых, проходящих через эту точку и целиком лежащих на гиперболическом параболоиде. Уравнения этих прямых могут быть получены (с точностью до некоторого общего ненулевого множителя) путем подбора конкретных значений параметра a.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется однополостным гиперболоидом.

Свойства однополостного гиперболоида:

1°. Однополостный гиперболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что .

2°. Однополостный гиперболоид обладает

— центральной симметрией относительно начала координат;

— осевой симметрией относительно всех координатных осей;

— плоскостной симметрией относительно всех координатных плоскостей.

3°. В сечении однополостного гиперболоида плоскостью, ортогональной оси координат , получается эллипс, а плоскостями, ортогональными осям или гипербола. (Рис.4) Вывод уравнений для линий сечения аналогичен рассмотренным ранее случаям.

4°. Однополостный гиперболоид имеет два семейства прямолинейных образующих. Записав уравнение данной поверхности в виде , можно прийти к заключению, что при любых a и b, точки, лежащие на прямых

и ,

будут принадлежать и однополостному гиперболоиду, поскольку почленное перемножение уравнений плоскостей, задающих эти прямые, дает уравнение однополостного гиперболоида.

Для каждой точки однополостного гиперболоида существует пара прямых, проходящих через эту точку и целиком лежащих на однополостном гиперболоиде. Уравнения этих прямых могут быть получены путем подбора конкретных значений a и b.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется двуполостным гиперболоидом.

Свойства двуполостного гиперболоида:

1°. Двуполостный гиперболоид — неограниченная поверхность, поскольку из его канонического уравнения следует, что и не ограничен сверху.

z

2°. Двуполостный гиперболоид обладает:

— центральной симметрией относительно начала координат;

— осевой симметрией относительно всех координатных осей;

— симметрией относительно всех координатных плоскостей.

3°. В сечении двуполостного гиперболоида плоскостью, ортогональной оси координат , при получается эллипс, а плоскостями, ортогональными осям или гипербола. (Рис. 5)

Пусть некоторая кривая, расположенная в плоскости , имеет уравнение . Если вращать эту кривую вокруг оси , то каждая ее точка будет описывать окружность.

Совокупность точек, координаты которых удовлетворяют уравнению , называется поверхностью вращения.

К поверхностям вращения, например, относятся:

1°. Эллипсоид вращения

.

2°. Конус вращения

.

Замечание: поверхности вращения линии второго порядка не всегда задаются уравнениями второго порядка.

Например, если вращать квадратную параболу вокруг оси , получается эллиптический параболоид вращения, однако при вращении этой же кривой вокруг оси получится поверхность вращения, задаваемая уравнением вида или .

Составить уравнение поверхности вращения, получаемой при вращении линии вокруг оси .

Решение. Зафиксируем на вращаемой линии точку с координатами . Линия, получаемая при вращении этой точки вокруг оси в плоскости , есть окружность радиуса , с уравнением .

С другой стороны, , поэтому . Наконец, в силу произвольности точки , выбранной на линии вращения, получаем, что уравнение поверхности вращения — эллиптического параболоида есть .


источники:

http://mathhelpplanet.com/static.php?p=giperboloid

http://pandia.ru/text/78/109/12743.php