Вывод уравнений геометрического места точки

Вывод уравнений геометрического места точки

Глава 10. Вывод уравнений заранее данных линий

В задачах предыдущего параграфа линия определялась при помощи данного уравнения. Здесь мы будем иметь задачи противоположного характера; в каждой из них линия определяется чисто геометрически, а уравнение ее требуется найти.

ПРИМЕР 1. В декартовой прямоугольной системе координат вывести уравнение геометрического места точек, сумма квадратов расстояний которых до двух данных точек (-а; 0) и (а; 0) есть величина постоянная, равная .

РЕШЕНИЕ. Обозначим буквой М произвольную точку линии, буквами х и у обозначим координаты этой точки. Так как точка М может занимать на линии любое положение то х и у являются переменными величинами; их называют текущими координатами.

Запишем геометрическое свойство линии символически:

(1).

В этом отношении при движении точки М могут меняться длины и . Выразим их через текущие координаты точки М:

, (2)

Подставив полученные выражения в равенство (1), найдем уравнение, связывающее координаты х, у точки М:

Это и есть уравнение данной линии.

Действительно, для каждой точки М, лежающей на этой инии, выполняется условие (1) и, следовательно, координаты точки М будут удовлетворять уравнению (2); для каждой точки М, не лежащей на линии, не будет выполняться условие (1) и, следовательно, ее координаты не будут удовлетворять уравнению (2).

Таким образом, задача решена. Однако уравнение (2) можно упростить; раскрывая скобки и приводя подобные члены, получим уравнение данной линии в виде:

Теперь легко понять, что данная линия есть окружность с центром в начале координат и радиусом, равным а.

ПРИМЕР 2. В полярной системе координат вывести уравнение окружности, которая имеет центр С( ; ) и радиус r (см. рис.).

РЕШЕНИЕ. Олозначим буквой М произвольную точку окружности, буквами и — ее полярные координаты. Так как точка М может занимать на окружности любое положение, то и являются переменными величинами. Как и в случае декартовой системы, их называют текущими координатами.

Все точки окружности отстоят от центра на расстоянии r ; запишем это условие символически:

(1).

Выразим СМ через текущие координаты точки М (воспользуемся теоремой косинусов):

Подставив полученное выражение в равенство (1), найдем уравнение, связывающее координаты , точки М:

(2)

Это и есть уравнение данной окружности.

Действительно, для каждой точки М, лежащей на данной окружности, выполняется условие (1) и , следовательно, координаты точки М будут удовлетворять уравнению (2); для каждой точки М, не лежащей на данной окружности, не будет выполняться условие (1) и, следовательно, ее координаты не будут удовлетворять уравнению (2).

Таким образом, задача решена. Можно лишь несколько упростить полученное уравнение и представить его в виде, свободным от радикала:

.

Вывод уравнений геометрического места точки

Найти уравнение геометрического места точек, произведение расстояний которых до двух данных точек A и B есть величина постоянная, равная a 2 . Длину AB считать равной 2a.

Проведем вывод уравнения в прямоугольных координатах. Направим ось Ox по прямой, соединяющей A и B, как обычно, вправо, начало координат поместим в середине отрезка AB, ось Oy направим вверх по перпендикуляру к оси Ox. Длина отрезка AB по условию равна 2a (AB = 2a); тогда точки A и B будут иметь координаты: A(-a, 0); B(a, 0). Пусть точка M принадлежит кривой. Ее координаты обозначим через x и y (см. рисунок).

Из условия задачи AM * BM = a 2 . По формуле расстояния между двумя точками

Возведем обе части этого уравнения в квадрат:

Эллипс — определение и вычисление с примерами решения

Эллипс:

Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек

Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы

Рис. 29. Вывод уравнения эллипса.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем Из треугольников и по теореме Пифагора найдем

соответственно. Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Уравнение принимает вид Разделив все члены уравнения на получаем каноническое уравнение эллипса: Если то эллипс вытянут вдоль оси Ох, для противоположного неравенствавдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:

  • т.е. точками пересечения эллипса с осью абсцисс будут точки
  • т.е. точками пересечения эллипса с осью ординат будут точки (Рис. 30).

Определение: Найденные точки называются вершинами эллипса.

Рис. 30. Вершины, фокусы и параметры эллипса

Определение: Если то параметр а называется большой, а параметр b — малой полуосями эллипса.

Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса

Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси

Если и эллипс вырождается в окружность. Если и эллипс вырождается в отрезок

Пример:

Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет

Решение:

Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса Следовательно, каноническое уравнение заданного эллипса имеет вид:

Пример:

Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина — в центре окружности

Решение:

Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса Итак, Окружность: Выделим полные квадраты по переменным Следовательно, центр окружности находится в точке О(-5; 1).

Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника равна Высота а основание Следовательно, площадь треугольника равна:

Эллипс в высшей математике

где и —заданные положительные числа. Решая его относительно , получим:

Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше , подкоренное выражение положительно, корень имеет два значения. Каждому значению , удовлетворяющему неравенству соответствуют два значения , равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси . Так же можно убедиться в том, что оно симметрично и относительно оси . Поэтому ограничимся рассмотрением только первой четверти.

При , при . Кроме того, заметим, что если увеличивается, то разность уменьшается; стало быть, точка будет перемещаться от точки вправо вниз и попадет в точку . Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.

Полученная линия называется эллипсом. Число является длиной отрезка , число —длиной отрезка . Числа и называются полуосями эллипса. Число эксцентриситетом.

Пример:

Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.

Решение:

Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось примем прямую пересечения плоскостей, стало быть, ось будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости возьмем окружность радиуса с центром в начале координат, ее уравнение .

Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению .

Обозначим проекцию точки на плоскость буквой , а координаты ее—через и . Опустим перпендикуляры из и на ось , это будут отрезки и . Треугольник прямоугольный, в нем , ,, следовательно, . Абсциссы точек и равны, т. е. . Подставим в уравнение значение , тогда cos

а это есть уравнение эллипса с полуосями и .

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.

Замечание. Окружность можно рассматривать как эллипс с равными полуосями.

Уравнение эллипсоида

Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.

Рассмотрим сферу радиуса R с центром в начале координат:

где Х, У, Z — текущие координаты точки сферы.

Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными

В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем

Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в раз, если , и увеличиваются в раз, если и т. д.

Подставляя эти формулы в уравнение (1), будем иметь

где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.

Величины называются полуосями эллипсоида; удвоенные величины называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями

а = b = 6377 км и с = 6356 км.

Если а = b = с, то эллипсоид превращается в сферу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Гипербола
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://www.pm298.ru/reshenie/ottyh.php

http://www.evkova.org/ellips