Вывод уравнений максвелла для чайников

Вывод уравнений максвелла для чайников

Основные уравнения классической электродинамики (система уравнений Максвелла) по праву являются общепризнанными уравнениями и широко применяются в физике, радиофизике и электронике. Однако эти уравнения не были получены из общих физических законов, что не позволяло считать их абсолютно точными, допускало различного рода манипуляции с ними. Тем не менее, эти уравнения точные и выводятся из общих принципов физики и основ векторной алгебры [1, 2].

1. Вывод закона электромагнитной индукции Фарадея

Закон электромагнитной индукции Фарадея можно получить из уравнения для электромагнитных сил, действующих на точечный электрический заряд [1, 2]:

,(1)

где e – заряд электрона, E – вектор напряженности электрического поля, r – радиальный вектор, соединяющий ось источника магнитной индукции B с электрически заряженной частицей и лежащий в плоскости, ортогональной оси симметрии магнитного поля.

Рассмотрим случай, когда магнитная часть силы FЕМ равна и направлена противоположно ее электрической части:

.(2)

Такая ситуация возникает в проводнике с электрическим током высокой частоты, когда сила, действующая на электрон со стороны первичного электрического поля изменяется настолько быстро, что оказывается в противофазе с силой инерции электронов.

Сократим заряд в равенстве (2) и применим к обеим частям этого равенства операцию «ротор»:

.(3)

Пусть, например, ось z совпадает с направлением аксиального вектора B, тогда радиус-вектор будет иметь вид: r=xi+yj, где i и j – единичные векторы в направлениях осей координат x и y, соответственно. Радиальный векторr не имеет третьей составляющей вдоль оси z, поэтому второе слагаемое в (3) равно –2(∂B/∂t). Первое же слагаемое в уравнении (3) равно ∂B/∂t. В результате, после преобразования правой части последнего равенства, получаем:

.(4)

То есть из электромагнитного силового уравнения (1) в том случае, когда сила, действующая на электрон со стороны магнитного поля, полностью уравновешивается силой со стороны электрического поля, следует закон электромагнитной индукции Фарадея (4), − одно из основных уравнений электродинамики.

Уравнения (2) – (4) не зависят от того, имеется или отсутствует электрон в данной точке пространства. В результате такой независимости электрического и магнитного полей от электрического заряда уравнение (4) отражает пространственно-временные свойства самих изменяющихся полей, представимых в виде единого электромагнитного поля. При этом закон Фарадея (4) не только представляет собой закон электромагнитной индукции, но является и основным законом взаимного преобразования электрического и магнитного полей, − неотъемлемым свойством электромагнитного поля.

2. Вывод уравнения Максвелла

Прежде, чем приступить к выводу уравнения Максвелла, необходимо дополнить векторную алгебру еще одним векторным оператором.

2.1. Определение векторного оператора, выполняющего действие, обратное векторному преобразованию дифференциального векторного оператора «ротор»

Дифференциальный векторный оператор «ротор» выполняет операцию преобразования векторов в пространстве и операцию дифференцирования, то есть является сложным оператором, осуществляющим сразу два вида действий. Это прямо следует из его определения [3]:

,

где а – вектор, i, j, k – единичные векторы в направлении осей прямоугольной (декартовой) системы координат x, y и z, соответственно. При этом оператор, обратный оператору «ротор», в векторном анализе не определен, хотя каждое из выполняемых им преобразований, в принципе, обратимо.

Геометрическая иллюстрация пространственного преобразования вектора а в вектор rot(a), осуществляемая оператором «ротор», показана на Рис. 1.

Рис. 1. Геометрическое представление вектора а и векторного поля, образованного оператором «ротор».

2.2. Определение 1. Если два взаимосвязанных векторных поля, представленные векторами а и b, имеют производные по пространственным переменным x, y, z (в виде rotaи rotb)и производные по времени, ¶ а/ ¶ t и ¶ b/ ¶ t, причем производная вектора а по времени ортогональна производным по пространственным переменным вектора b, и наоборот, производная по времени вектора b ортогональна производным по пространственным переменным вектораа, то существует векторный оператор, осуществляющий пространственное преобразование векторного поля, не затрагивающее операцию дифференцирования, который условно назовем оператором «rerot», (противоположно закрученный или «реверсивный ротор») такой, что:

и ; (5)

и . (5*)

2.3. Свойства векторного оператора «реверсивный ротор»

2.3.1. Векторный оператор «реверсивный ротор» действует только на производные вектора.

2.3.2. Векторный оператор «реверсивный ротор» располагается перед производной вектора, на которую он действует.

2.3.3. Константы и числовые коэффициенты при производных вектора могут быть вынесены за пределы действия векторных операторов:

;

,

2.3.4. Векторный оператор «реверсивный ротор» действует на каждое из слагаемых уравнения, содержащего сумму векторных производных:

,

2.3.5. Результат действия векторного оператора «реверсивный ротор» на ноль есть ноль:

.

При этом результат действия векторного оператора «реверсивный ротор» на другие константы, в том числе на вектор, согласно пункту 2.3.1, не определен.

2.4. Пример применения оператора «реверсивный ротор»

Применим оператор «реверсивный ротор» к уравнению, содержащему взаимосвязанные векторы a и b:

.((*))

, откуда следует:

.((**))

Если теперь еще раз применить оператор «реверсивный ротор» к вновь образованному равенству (**), то получим:

или

, или окончательно:

.((*))

Последовательное двойное (или любое четное) применение оператора «реверсивный ротор» приводит к исходному равенству. Этим самым векторный оператор «реверсивный ротор» осуществляет не только взаимное преобразование дифференциальных уравнений взаимосвязанных векторных полей, но и устанавливает эквивалентность этих уравнений.

Геометрически это выглядит так. Оператор «ротор» дифференцирует и как бы закручивает прямолинейное векторное поле, делая его вихревым и ортогональным исходному векторному полю. Векторный оператор «реверсивный ротор» выполняет векторное преобразование, которое как бы раскручивает вихревое поле, закрученное оператором «ротор», превращая его в изменяющееся невихревое поле, представленное производной вектора по времени. Поскольку интегрирование не производится, производная вектора по времени соответствует изменению величины вектора. В результате имеем изменение вектора, величина которого изменяется в единственном направлении, ортогональном пространственным переменным оператора «ротор». И наоборот, векторный оператор «реверсивный ротор» закручивает невихревое изменяющееся векторное поле, представленное производной вектора по времени, превращая его в вихревое пространственное векторное поле, ортогональное исходной производной вектора по времени. Так как направление «кручения» оператора «реверсивный ротор» противоположно направлению вращения, осуществляемому оператором «ротор», то знак вновь образованного вихревого поля выбирается противоположным (отрицательным). То есть векторный оператор «реверсивный ротор» выполняет действие, обратное пространственному преобразованию оператора «ротор» на всем «пространстве» производных векторных полей. В то же время векторный оператор «реверсивный ротор» сам не дифференцирует вектор, на производную которого он действует. Этим самым осуществляется тождественное обратимое векторное преобразование.

Если ввести в векторный анализ интегральный векторный оператор, восстанавливающий не производную вектора, а сам вектор из ротора вектора (условно назовем такой оператор обратным ротором, или «rot -1 »), то такой оператор наряду с обратным векторным преобразованием одновременно должен производить операцию интегрирования.

Однако, в силу неоднозначности математической операции интегрирования, полностью обратный «ротору» оператор rot -1 не осуществляет однозначное обратное векторное преобразование.

2.5. Применение векторного оператора «реверсивный ротор» к физическим полям

При применении векторного оператора «реверсивный ротор» к физическим векторным полям необходимо учитывать изменение размерности правой и левой частей уравнения из-за перестановки переменных x, y, z и t при преобразовании. Обозначим размерность координат – метр (L), а времени – секунда (T).

Определение 2. Для физических векторных полей векторный оператор «реверсивный ротор», определяется следующим образом:

и ;(6)

и . (6*)

Обозначая размерное отношение L/T, как константу v, имеющую размерность скорости, [м/с], уравнения (6.4) и (6.4*) можно представить в виде:

и ;(7)
и .(7*)

2.6. Применение оператора «реверсивный ротор» к физическим полям

Применим векторный оператор «реверсивный ротор», определенный уравнениями (7), (7*), к уравнению (4), связывающему реальные физические поля E и B в электродинамике:

;

, что преобразуется к виду:

(8)
>.

Электродинамическая постоянная «v» не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия, c » 2.99792458 Ч 10 8 м/c, которая называется также скоростью света в вакууме.

То есть с помощью векторного преобразования «реверсивный ротор» из уравнения (4), представляющего собой закон электромагнитной индукции Фарадея, естественным образом вытекает одно из основных уравнений электродинамики — уравнение Максвелла (8), которое не следует ни из эксперимента, ни из известных физических законов. Уравнения (4) и (8) являются взаимосвязанными, трансформируемыми друг в друга при помощи векторного преобразования, что соответствует их физической эквивалентности. Поэтому справедливость одного из этих уравнений, установленная в виде физического закона (в данном случае — это закон электромагнитной индукции Фарадея (4)) является достаточным условием для утверждения о справедливости второго уравнения (уравнения Максвелла (8)) в качестве эквивалентного физического закона.

2.7. Трансформация векторных полей

Если исходить из определения оператора «ротор», то действие векторного оператора «обратный ротор», казалось бы, можно представить в виде, показанном на Рис. 2, где предполагается некоторая тождественность векторных полей до и после векторного преобразования дифференциальным векторным оператором «ротор».

Проверим это предположение. Применим оператор «реверсивный ротор» к уравнению:

.

, откуда следует:

.

Полученное равенство изменяет направление векторов в исходном определении дифференциального векторного оператора «ротор», что недопустимо.

Поэтому .

Применение векторного оператора «реверсивный ротор» к производным одного и того же векторного поля показывает принципиальное различие между векторным полем до применения, и векторным полем после применения оператора «ротор». Это означает необходимость представлять поле вектора а и поле вектора rot(а) как трансформируемые друг в друга, но различные векторные поля.

Исходное векторное поле, представленное вектором а, будем считать первичным (причиной), а поле, образованное векторным преобразованием оператора «ротор», будем считать вторичным полем (следствием действия оператора «ротор») и обозначим его, как поле векторов b.

Рис. 2. Результат отождествления векторных полей до и после векторного преобразования «ротор». Направление полей не соответствует исходному определению оператора «ротор», показанному на Рис. 1, — «правый винт» превращается в «левый винт».

Тогда обратное преобразование векторных полей, не затрагивающее операции дифференцирования, во введенных таким образом обозначениях будет иметь вид, показанный на Рис. 3.

Рис. 3. Определение векторного преобразования, обратного операции «ротор», не затрагивающего операции дифференцирования. Разделение векторных полей выполнено по признаку причинно-следственных отношений. Исходное поле представлено вектором а (причина), а поле, образованное операцией «ротор», представлено вектором b (следствие).

В электродинамике в некоторых простейших случаях переход к вращающейся системе отсчета, внутри которой исчезает вращение, приводит к отсутствию сил со стороны магнитного поля, и силовое воздействие может быть представлено только силой со стороны электрического поля. Но из этого никак не следует вывод, что магнитного поля нет или оно всегда может быть заменено электрическим полем. Частный случай векторного поля, взятого в отдельной изолированной системе отсчета, относится только к данной выбранной системе, в которой осуществляется ограниченное по степеням свободы движение электрического заряда.

Поскольку в пространстве существуют и прямолинейные векторные поля, и вращающиеся замкнутые векторные поля, а находиться в двух системах отсчета одновременно невозможно, то в общем случае выбором системы координат нельзя свести одно поле к другому. Источник этих полей один – это электрические заряды. Электрические заряды создают вокруг себя электрическое поле (всесторонне направленное векторное поле), а движение электрических зарядов создает магнитное поле (замкнутое круговое векторное поле). При этом, естественно, прямолинейное движение электрических зарядов создает вокруг них круговое магнитное поле, а круговое движение электрических зарядов (равно как вращение электрически заряженных частиц вокруг собственной оси) создает прямолинейное в пространстве магнитное поле, заключенное в объеме, ограниченном радиусом вращения.

2.8. Скорость распространения электромагнитного взаимодействия

Скорость преобразования векторных полей друг в друга не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия в свободном пространстве (вакууме),c » 2.99792458 Ч 10 8 м/c, и эта величина по праву называется электродинамической постоянной.

Таким образом, изменение электрического и магнитного полей, осуществляемое в трехмерном пространстве, имеет свойство взаимного преобразования векторов, и это свойство в электродинамике осуществляется посредством закона электромагнитной индукции Фарадея. Если считать такое преобразование прямым, то обратное преобразование векторных полей осуществляется при помощи уравнения, полученного Максвеллом интуитивным путем, и которое можно получить при помощи векторного оператора «реверсивный ротор». Взаимное преобразование электрического и магнитного полей, которое осуществляется без источников электрического заряда, представляет собой один из особых видов волнового движения — поперечную электромагнитную волну, которая переносит электромагнитную энергию в свободном пространстве с абсолютной скоростью преобразования полей. Но при этом источником энергии электромагнитной волны всегда являются ускоренно движущиеся электрические заряды.

3. Уравнения источников электромагнитных полей.

Оставшиеся два из четырех основных уравнений системы уравнений Максвелла лишь устанавливают факт наличия в природе электрических зарядов, создающих электрическое поле (теорема Гаусса, которая прямо следует из закона Кулона):

,

и факт отсутствия в природе магнитных зарядов:

.

Литература

  1. Сокол-Кутыловский О.Л. Гравитационные и электромагнитные силы. Екатеринбург, 2005.
  2. Сокол-Кутыловский О.Л. Русская физика. Екатеринбург, 2006.
  3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗОВ (под редакцией Г. Гроше и В. Циглера), М., «Наука», 1980.

Уравнения Максвелла

Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

  1. Порождает электрическое поле (также если заряд изменяется со временем, то он вызывает появление электрического поля).
  2. В дальнейшем он вызывает появление магнитного поля.

Уравнения Максвелла в дифференциальной форме

Уравнение 1: Закон Гаусса или Теорема Гаусса

Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Можно создать электрическое поле, изменив магнитное поле.

Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

  1. Электрический ток порождает магнитные поля, а эти магнитные поля (вокруг цепи) вызывают электрический ток.
  2. Изменяющееся во времени магнитное поле вызывает распространение электрического поля.
  3. Циркулирующее во времени электрическое поле вызывает изменение магнитного поля во времени.

Уравнение 3: Закон Гаусса для магнетизма

Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

Закон Гаусса для магнетизма утверждает (очень кратко):

  1. Магнитных монополей не существует.
  2. Расхождение полей B или H всегда равно нулю в любом объёме.
  3. На расстоянии от магнитных диполей (это круговой ток) магнитные поля текут по замкнутому контуру.

Уравнение 4: Закон Ампера

Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

Уравнения Максвелла в интегральной и дифференциальной форме

Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

Уравнение 1: Закон Гаусса (Теорема Гаусса)

Это же уравнение в интегральной форме:

Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

Уравнение 3: Закон Гаусса для магнетизма

И это же уравнение в интегральной форме:

Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

Уравнение 4: Закон Ампера

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

Почему теорию Максвелла так трудно понять?

Скромность не всегда добродетель

В 1865 году Джеймс Клерк Максвелл опубликовал свою статью “Динамическая теория электромагнитного поля» в «Философских трудах Королевского общества». Ему было тогда тридцать четыре года. Оглядываясь назад, мы можем заметить, что работа Максвелла была самым важным событием девятнадцатого века в истории физических наук. Если говорить в общем о естественных науках, то статья Максвелла была второй по значимости после «Происхождения видов» Дарвина. Но важность работ Максвелла не была очевидна для его современников. Более двадцати лет его теория электромагнетизма в основном игнорировалась. Физикам было трудно ее понять из-за обилия сложных уравнений. Математикам было трудно ее понять, потому что Максвелл использовал для объяснений физический язык. Этот труд был расценен как неясное предположение без должного количества экспериментальных доказательств. Физик Михаил Пупин в своей автобиографии «От иммигранта к изобретателю» описывает, как он путешествовал из Америки в Европу в 1883 году в поисках того, кто понимал Максвелла. Он отправился изучать теорию Максвелла, как рыцарь в поисках Святого Грааля.

Пупин сначала поступил в Кембридж с твердым намерением изучить теорию у самого Максвелла. Он не знал, что Максвелл умер четыре года назад. Узнав, что Максвелл умер, он остался в Кембридже и был назначен преподавателем колледжа. Но его наставник знал о теории Максвелла меньше, чем он сам, и был заинтересован только в том, чтобы научить Михаила решать математические задачи трипоса. Михаил Пупин был поражен, обнаружив, как он говорит, «как мало было физиков, которые уловили смысл теории, даже через двадцать лет после того, как она была сформулирована Максвеллом в 1865 году». В конце концов он бежал из Кембриджа в Берлин и поступил студентом к Герману фон Гельмгольцу. Гельмгольц понимал теорию и учил Пупина тому, что знал сам. Пупин вернулся в Нью-Йорк, стал профессором Колумбийского университета и обучал последующие поколения студентов, которые впоследствии распространили Евангелие Максвелла по всей Америке.

Открытка от Максвелла Питеру Тейту

Как случилось, что теория Максвелла была так широко проигнорирована? В конце концов, Максвелл не был похож на своего современника Грегора Менделя, монаха, работавшего в безвестном монастырском саду в Богемии. Максвелл был известным профессором, директором Кавендишской лаборатории в Кембридже, ведущей фигурой в британском научном сообществе. Свидетельством его высокого положения можно считать то, что он был президентом секции А (математические и физические науки) Британской ассоциации содействия развитию науки, когда ассоциация провела свое ежегодное собрание в Ливерпуле в 1870 году. Он выступил с президентской речью в Ливерпуле, которая была опубликована во втором томе недавно основанного журнала «Nature». Стиль его выступления показывает нам, почему его теорию не воспринимали всерьез. Можно было ожидать, что он воспользуется возможностью, предоставленной президентской платформой, чтобы объявить миру о важности открытий, которые он сделал пять лет назад. Он не сделал ничего подобного. Он был абсурдно и раздражающе скромен.

Максвелл в первую очередь объявил тему своего выступления — обзор последних достижений, которые были сделаны на границе между математикой и физикой. Затем он с большим энтузиазмом рассказал о вихревой теории молекул, недавно предложенной сэром Уильямом Томсоном (впоследствии ставшим лордом Кельвином).

Теория, которую сэр Уильям основал на великолепных гидродинамических теоремах Гельмгольца, ищет свойства молекул в кольцевых вихрях однородной несжимаемой жидкости без трения. Гельмгольц показал, что в идеальной жидкости такое кружащееся кольцо, если оно однажды возникло, будет продолжать кружиться вечно, всегда будет состоять из той же самой части жидкости, которая была сначала закручена, и никогда не может быть разрезана надвое какой-либо естественной причиной. Эти кольцевые вихри способны к таким разнообразным связям и узловатым самоинволюциям, что свойства различных узловатых вихрей должны быть столь же различны, как и свойства различных видов молекул.

И так далее. Максвелл объяснил, как древняя теория о том, что материя состоит из атомов, столкнулась с логическим парадоксом. С одной стороны, атомы должны были быть твердыми, непроницаемыми и неразрушимыми. С другой стороны, данные спектроскопии и химии показали, что атомы имеют внутреннюю структуру и находятся под влиянием внешних сил. Этот парадокс в течение многих лет блокировал прогресс в понимании природы материи. Теперь, наконец, вихревая теория молекул разрешила парадокс. Вихри в эфире мягкие и имеют внутреннюю структуру, и тем не менее, согласно Гельмгольцу, они индивидуальны и неразрушимы. Оставалось только вывести факты спектроскопии и химии из законов взаимодействия вихрей, предсказанных гидродинамикой идеальной жидкости. Максвелл считал эту вихревую теорию материи замечательным примером плодотворного взаимодействия математики и физики.

Неясно, верил ли Максвелл всерьез в то, что говорил о вихревой теории. Возможно, он хотел, чтобы его речь развлекала слушателей, а не просвещала их. У него было хитрое чувство юмора, и вполне возможно, что он хвалил теорию вихря, зная, что более проницательные члены аудитории поймут, что теория была шуткой. Только в конце своего выступления Максвелл кратко упомянул о своей теории электромагнетизма.

Другая теория электричества, которую я предпочитаю, отрицает действие на расстоянии и приписывает электрическое действие напряжениям и давлениям во всепроникающей среде, причем эти напряжения одинаковы по характеру с теми, которые известны инженерам, и среда идентична той, в которой предполагается распространение света.

Фраза «Другая теория электричества, которую я предпочитаю», кажется, намеренно скрывает тот факт, что это была его собственная теория. Неудивительно, что вихри Кельвина произвели на его слушателей большее впечатление, чем уравнения Максвелла.

Мораль этой истории заключается в том, что скромность не всегда является добродетелью. Максвелл и Мендель оба были чрезмерно скромны. Скромность Менделя задержала прогресс биологии на пятьдесят лет. Скромность Максвелла замедлила прогресс физики на двадцать лет. Для прогресса науки будет лучше, если люди, делающие великие открытия, не будут слишком скромны, чтобы трубить в свои собственные трубы. Если бы у Максвелла было такое же эго, как у Галилея или Ньютона, он бы позаботился о том, чтобы его работы не игнорировались. Максвелл был таким же великим ученым, как Ньютон, и гораздо более приятным человеком. Но, к сожалению, он не начал президентскую речь в Ливерпуле словами, подобными тем, которые Ньютон использовал, чтобы представить третий том своей Principia Mathematica: «. исходя из тех же принципов, я теперь демонстрирую структуру системы мира». Ньютон не называл свой закон всемирного тяготения «очередной теорией тяготения, которую я предпочитаю».

Теория Максвелла и квантовая механика

Помимо скромности Максвелла, были и другие причины, по которым его теорию было трудно понять. Он заменил ньютоновскую вселенную материальных объектов, взаимодействующих друг с другом на расстоянии, вселенной полей, простирающихся через пространство и взаимодействующих только локально с материальными объектами. Понятие поля было трудно понять, потому что поля неосязаемы. Ученые того времени, включая самого Максвелла, пытались представить поля как механические структуры, состоящие из множества маленьких колесиков и вихрей, простирающихся в пространстве. Эти структуры должны были переносить механические напряжения, которые электрические и магнитные поля передавали между электрическими зарядами и токами. Чтобы поля удовлетворяли уравнениям Максвелла, система колес и вихрей должна была быть чрезвычайно сложной.

Если попытаться визуализировать теорию Максвелла с помощью таких механических моделей, она выглядит как возврат к астрономии Птолемея с планетами, движущимися по циклам и эпициклам в небе. Это не похоже на изящную астрономию Ньютона. Уравнения Максвелла, записанные в неуклюжих обозначениях, которыми пользовался Максвелл, были пугающе сложными, а его механические модели — еще хуже. Для современников теория Максвелла была лишь одной из многих теорий электричества и магнетизма. Ее было трудно осмыслить, и, казалось, не было явного преимущества перед другими теориями, которые описывали электрические и магнитные силы в ньютоновском стиле как дальнодействие между зарядами и магнитами. Неудивительно, что мало кто из современников Максвелла прилагал усилия, чтобы изучить его теорию.

Теория Максвелла становится простой и понятной только тогда, когда вы отказываетесь мыслить в терминах механических моделей. Вместо того чтобы думать о механических объектах как о первичных, а об электромагнитных напряжениях как о вторичных следствиях, вы должны думать об электромагнитном поле как о первичном, а о механических силах как о вторичном конструкте. Мысль о том, что первичными составляющими Вселенной являются поля, не сразу пришла в голову физикам поколения Максвелла. Поля — это абстрактное понятие, далекое от привычного мира вещей и сил. Уравнения поля Максвелла являются уравнениями в частных производных. Они не могут быть выражены простыми словами, такими как закон движения Ньютона: сила равна массе, умноженной на ускорение. Теория Максвелла должна была ждать следующего поколения физиков, Герца, Лоренца и Эйнштейна, чтобы раскрыть свою силу и прояснить свои концепции. Следующее поколение выросло с уравнениями Максвелла и чувствовало себя как дома во вселенной, построенной из полей. Первенство полей было так же естественно для Эйнштейна, как первенство механических структур — для Максвелла.

https://ddcolrs.wordpress.com/2018/01/17/maxwells-equations-from-20-to-4/

Современный взгляд на мир, возникший из теории Максвелла, — это мир с двумя слоями. Первый слой, слой фундаментальных составляющих мира, состоит из полей, удовлетворяющих простым линейным уравнениям. Второй слой, слой вещей, которые мы можем непосредственно потрогать и измерить, состоит из механических напряжений, энергий и сил. Эти два слоя связаны, потому что величины во втором слое являются квадратичными или билинейными комбинациями величин в первом слое. Чтобы вычислить энергии или напряжения, вы берете квадрат напряженности электрического поля или умножаете одну составляющую поля на другую. Двухслойная структура мира — основная причина, по которой теория Максвелла казалась загадочной и трудной. Объекты на первом уровне, объекты, которые действительно фундаментальны, являются абстракциями, не доступными непосредственно нашим чувствам. Объекты, которые мы можем чувствовать и осязать, находятся на втором слое, и их поведение лишь косвенно определяется уравнениями, действующими на первом слое. Двухслойная структура мира подразумевает, что основные процессы природы скрыты от нашего взгляда.

Теперь мы считаем само собой разумеющимся, что электрические и магнитные поля являются абстракциями, не сводимыми к механическим моделям. Чтобы убедиться в этом, достаточно взглянуть на единицы измерения электрического и магнитного полей. Условная единица напряженности электрического поля — квадратный корень из джоуля на кубический метр. Джоуль — это единица энергии, а метр — единица длины, но квадратный корень из джоуля — это не единица чего-то осязаемого. Мы не можем представить себе, как можно измерить непосредственно квадратный корень из джоуля. Единица измерения напряженности электрического поля — это математическая абстракция, выбранная таким образом, что квадрат напряженности поля равен плотности энергии, которую можно измерить с помощью реальных приборов. Единицей плотности энергии является джоуль на кубический метр, и поэтому мы говорим, что единицей напряженности поля является квадратный корень из джоуля на кубический метр. Это не означает, что напряженность электрического поля можно измерить с помощью квадратного корня калориметра. Это означает, что напряженность электрического поля — абстрактная величина, несоизмеримая с любыми величинами, которые мы можем измерить непосредственно.

Через шестьдесят лет после того, как Максвелл опубликовал свою теорию, Шредингер, Гейзенберг и Дирак изобрели квантовую механику. Квантовая механика была принята гораздо быстрее, чем теория Максвелла, потому что она сделала множество определенных предсказаний об атомных процессах и эксперименты показали, что все предсказания были правильными. Через год-два все поверили в квантовую механику как в практический инструмент для расчета основных процессов физики и химии. Природа, очевидно, подчинялась законам квантовой механики. Но значение квантовой механики оставалось спорным. Хотя квантовая механика была быстро принята, она не была быстро понята. Резкие расхождения во мнениях по поводу интерпретации квантовой механики сохраняются на протяжении семидесяти лет.

И почему их никто не понимал?

Прошло около тридцати лет после Максвелла, прежде чем его уравнения стали понятны всем. Для достижения согласованного понимания квантовой механики потребуется по меньшей мере вдвое больше времени. Мы все еще ведем страстные споры между сторонниками различных интерпретаций квантовой механики, Копенгагенской интерпретации, многомировой интерпретации, декогерентной интерпретации, интерпретаций скрытых переменных и многих других. Причина этих споров заключается в том, что различные интерпретаторы пытаются описать квантовый мир словами повседневного языка, а язык не подходит для этой цели. Повседневный язык описывает мир таким, каким его видят люди. Наше восприятие мира целиком связано с макроскопическими объектами, которые ведут себя в соответствии с правилами классической физики. Все понятия, которые появляются в нашем языке, являются классическими. Каждая из интерпретаций квантовой механики — это попытка описать квантовую механику на языке, в котором отсутствуют соответствующие понятия. Битвы между соперничающими интерпретациями продолжаются безостановочно, и конца им не видно.

Для понимания квантовой механики может оказаться полезным подчеркнуть сходство между квантовой механикой и теорией Максвелла. В двух отношениях теория Максвелла может дать ключ к тайнам квантовой механики.

Во-первых, попытки понять квантовую механику в терминах языка, основанного на классических понятиях, аналогичны попыткам понять теорию Максвелла в терминах механических моделей. Теория Максвелла стала изящной и понятной только после того, как были оставлены попытки представить электромагнитные поля с помощью механических моделей. Точно так же квантовая механика становится изящной и понятной только после того, как попытки описать ее словами прекращаются. Чтобы увидеть красоту теории Максвелла, необходимо отойти от механических моделей и погрузиться в абстрактный мир полей. Чтобы увидеть красоту квантовой механики, необходимо отойти от словесных описаний и погрузиться в абстрактный мир геометрии. Математика — это язык, на котором говорит природа. Язык математики делает мир максвелловских полей и мир квантовых процессов одинаково прозрачными.

Вторая связь между теорией Максвелла и квантовой механикой заключается в глубоком сходстве структуры. Подобно теории Максвелла, квантовая механика делит Вселенную на два слоя. Первый слой содержит волновые функции Шредингера, матрицы Гейзенберга и векторы состояний Дирака. Величины в первом слое подчиняются простым линейным уравнениям. Их поведение можно точно рассчитать. Но их нельзя наблюдать непосредственно. Второй слой содержит вероятности столкновений и превращений частиц, интенсивности и поляризации излучения, математические ожидания энергий и спинов частиц. Величины во втором слое могут быть непосредственно наблюдаемы, но не могут быть непосредственно вычислены. Они не подчиняются простым уравнениям. Это либо квадраты величин первого слоя, либо произведения одной величины первого слоя на другую. В квантовой механике, как и в теории Максвелла, Природа живет в абстрактном математическом мире первого слоя, но мы, люди, живем в конкретном механическом мире второго слоя. Мы можем описать Природу только абстрактным математическим языком, потому что наш вербальный язык находится дома только во втором слое.

Как и в случае с теорией Максвелла, абстрактное качество величин первого слоя проявляется в единицах, в которых они выражаются. Например, волновая функция Шредингера выражается в единице, которая является квадратным корнем из обратного кубического метра. Уже один этот факт ясно показывает, что волновая функция — это абстракция, навсегда скрытая от нашего взгляда. Никто никогда не измерит напрямую квадратный корень из кубического метра. Конечная важность теории Максвелла гораздо больше, чем ее непосредственные достижения в объяснении и объединении явлений электричества и магнетизма. Его конечная важность состоит в том, чтобы стать прототипом для всех великих триумфов физики двадцатого века. Это прототип теории относительности Эйнштейна, квантовой механики, теории обобщенной калибровочной инвариантности Янга-Миллса и единой теории полей и частиц.

Все эти теории основаны на концепции динамических полей, введенной Максвеллом в 1865 году. Все они имеют одинаковую двухслойную структуру, отделяющую мир простых динамических уравнений от мира человеческого наблюдения. Все они воплощают в себе то же качество математической абстракции, которое сделало теорию Максвелла трудной для понимания его современниками. Мы можем надеяться, что глубокое понимание теории Максвелла приведет к рассеиванию тумана непонимания, который все еще окружает интерпретацию квантовой механики. И мы можем надеяться, что глубокое понимание теории Максвелла поможет проложить путь к дальнейшим триумфам физики в XXI веке.


источники:

http://www.uznaychtotakoe.ru/uravneniya-maksvella/

http://habr.com/ru/post/539188/