Вывод уравнения бернулли из закона живых сил

Закон Бернулли как следствие закона сохранения энергии

Разделы: Физика

Цели урока:

  • Изучить частный случай закона сохранения энергии в применении к объяснению зависимости давления от скорости движения жидкости и газа;
  • Сформулировать закон Бернулли;
  • Рассмотреть примеры его применения и проявления на практике.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, презентация к уроку.

Оборудование для демонстраций: весы, макет крыла самолета, небольшая воронка, теннисный шарик, воздуходувка (фен), демонстрационный манометр, таблички на магнитах с физическими формулами.

Оборудование для практических работ: стакан с водой, одноразовый шприц, два листа бумаги, бруски.

I. Организационный момент.

Тема, скорее название, нашего урока звучит не совсем обычно. Может быть кто-то из вас подумал: причем здесь физика? А действительно, причем здесь физика? А это и предстоит нам выяснить сегодня. В конце урока вы должны будете сами сформулировать правильно “физическую” тему. Я же скажу только, что эти объекты объединены одним и тем же законом, а именно, законом сохранения полной механической энергии. Работать вы будете на рабочих картах (приложение 1). Напишите свою фамилию на карте в правом верхнем углу.

II. Актуализация знаний.

Итак, начинаем. Раз уж я упомянула закон сохранения механической энергии, то давайте его вспомним.

1. Что утверждает закон сохранения полной механической энергии?
2. Что называется полной механической энергией?
3. Какая энергия называется кинетической? По какой формуле рассчитывается?
4. Какая энергия называется потенциальной? Формулы потенциальной энергии.

III. Основная часть. Изучение нового материала.

Сегодня на уроке мы будем говорить о применении закона сохранения для движущихся потоков жидкостей и газов. Движение жидкостей и газов разделяется на ламинарное и турбулентное. На дидактических картах (приложение 2) у вас есть их определения. Давайте прочитаем. Мы будем рассматривать ламинарное течение.

А начнем мы с вопроса: можно ли удержать шарик в вертикальной воронке, выдувая из нее воздух? Хорошо, давайте проверим это на опыте. Критерием любой истины является опыт. Мне нужен помощник, который выполнит этот несложный эксперимент. Оказывается, чтобы удержать шарик в воронке надо выдувать воздух. Кто же может объяснить этот “парадокс”? Тогда запишем первый вопрос в таблицу на рабочей карте. Почему при выдувании воздуха из воронки шарик удерживается в ней?

Продолжаем отвечать на вопросы. Что произойдет с листом бумаги, если подуть над ним? Расположите лист бумаги на уровне рта и с силой продуйте воздух. Что произошло с листом бумаги? А почему? Запишите в таблицу на рабочих картах и этот вопрос: почему поднялся листок?

Проведем еще один опыт. Наберите в шприц воды из стакана и, надавливая на поршень, выпустите ее (добейтесь, чтобы она вытекала непрерывной струёй). Сначала выполняет товарищ по парте, а сосед наблюдает. Потом поменяйтесь ролями. Обратите внимание на толщину вытекающей струи. Струя становится уже. А теперь надо объяснить увиденное. Есть какие-то предположения? Записываем в таблицу второй вопрос: почему струя вытекающей воды становится уже? К этим вопросам мы вернемся попозже.

Что ж, вопросов, наверно, пока достаточно. Пора искать ответы. Поможет в этом известный вам закон сохранения механической энергии и неизвестный пока закон Бернулли.

Рассмотрим ламинарное течение жидкости по трубе разного сечения. Посмотрите на слайд. Там, где сечение не меняется скорость тоже остается постоянной. Но одинакова ли скорость течения жидкости на различных участках? И где больше? А может кто-нибудь объяснить почему? (Так как жидкость несжимаема, то за одинаковый промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Но как жидкость, протекающая через первое сечение может “успеть” за то же время протечь через значительно меньшее сечение ? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких).

Покажите на рисунке 1 в рабочих картах векторы скоростей в различных участках. А теперь проверим как это получилось у меня (слайд). Значит, скорость зависит от сечения. Более того, зависимость эта обратно пропорциональна. Математически это выражается следующим соотношением, которое носит название уравнения неразрывности струи: VS= const, здесь – V скорость жидкости, S – площадь сечения трубы, по которой течет жидкость. Сформулировать этот закон можно так: сколько вливается жидкости в трубу, столько должно и выливаться, если условия течения не изменяются. Скорость в узких участках трубы должна быть выше, чем в широких.

Отсюда следует, что

Вывод: чем меньше площадь сечения, тем больше скорость.

Задача №1. Как и во сколько раз изменится кинетическая энергии жидкости, если сечение трубы уменьшить в 2 раза? (Ответ увеличится в 4 раза). А потенциальная энергия? Осторожно, ошибка!

Потенциальная энергия уменьшится, но необязательно в 4 раза!

(Например: 100 = 100, 100 = 10 + 90, 100 = 40 + 60)

С вопросом о скорости вы справились хорошо. А что скажете о давлении воды в разных частях? Если изменяется, то как? На рисунке 2 отметьте уровень воды в вертикальных трубках в зависимости от давления жидкости в горизонтальной трубе. А теперь посмотрим, на этот слайд . В узких местах трубы высота столбика жидкости меньше, чем в широких. О чем говорит разная высота воды? Оказывается, в узких местах трубы давление жидкости меньше, чем в широких. А почему?

При переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии. Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия “mgh”, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости. Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы.

Чтобы разобраться в причинах уменьшения давления в узких частях и увеличения в широких, используем закон сохранения энергии и математические навыки. Я начну, а вы будете помогать.

Работа сил давления, совершенная над элементом жидкости при его перемещении, равна:

здесь =V1 и =V 2 – объемы жидкости, прошедшей за одно и тоже время через сечения 1 и 2. Подставим (2) в (1) и получаем:

Так как высота центра масс трубы не меняется, то h1 = h 2 . Выберем нулевой уровень, проходящий через центр масс, тогда mgh 1 = mgh2 = 0.

Так как жидкость практически несжимаема, то объемы ее, прошедшие за одно и тоже время равны, V1 = V 2 (или ), поэтому обе части равенства можно разделить обе части на V.

(*)

Таким образом, если скорость, например, увеличивается, то увеличивается первое слагаемое, значит, чтобы равенство выполнялось, на такую же величину второе слагаемое уменьшается, т.е. уменьшается давление.

Вывод: Чем больше скорость потока жидкости, тем меньше ее давление.

Зависимость давления от скорости течения называют эффектом, а уравнение (*) – законом Бернулли в честь автора, швейцарского ученого Даниила Бернулли, который, кстати, работал в С.Петербурге. Закон Бернулли для ламинарных потоков жидкости и газов является следствием закона сохранения энергии.

Убедимся на опыте, что полученный вывод справедлив и для газов. Для этого выполним еще практические задания (описание на дидактической карте).

1 Вариант. Возьмите в руки два листка бумаги и расположите их на расстоянии3– 4см друг от друга и продуйте несильно между ними воздух. Что наблюдаем? Почему? Между листочками давление уменьшилось, а снаружи осталось таким же. Повторите опыт, но подуйте теперь сильнее. Объясните этот результат.

2 Вариант. Положите листок на две книги, как показано на слайде. Продуйте воздух под листком сначала несильно, а потом сильнее. Объясните, что вы наблюдали.

Настало время для ответов на оставленные вами, но не забытые мною вопросы:

  • Почему при выдувании воздуха из воронки шарик удерживается в ней?
  • Почему поднялся листок?
  • Почему струя вытекающей воды становится уже?

Запишите ответы в таблицы.

Вот и настала очередь самолетов. Посмотрим видеофрагмент (Приложение 4).

Так почему же поднимается самолет? В чем причина возникновения подъемной силы?

Все дело в форме крыла и в угле атаки.

Убедимся на опыте (рисунок 1). Почему нарушилось равновесие весов?

Кстати сказать, у птиц крыло тоже имеет похожую форму.

Эффект Бернулли — это то, благодаря чему птицы и самолеты могут летать. Разрез крыла у них практически одинаковый: за счет сложной формы крыла создается разница обтекающих его сверху и снизу воздушных потоков, что позволяет телу подниматься вверх.

Формулу для расчета подъемной силы впервые получил наш соотечественник Николай Егорович Жуковский – “отец русской авиации”.

Что касается белок – летяг, то они, конечно же не могут развить большую скорость и форма “крыльев” немножко другая, поэтому и подъемная сила у них невелика и возникает она в большой степени из-за угла наклона. Как и обычная белка, летяга большую часть жизни проводит на деревьях, но на землю спускается гораздо реже. Между передними и задними лапами у неё имеется кожная перепонка, которая позволяет планировать с дерева на дерево. Так белка-летяга преодолевает расстояние до 50–60 м по нисходящей параболической кривой. Для прыжка летяга забирается на верхушку дерева. Во время полёта её передние конечности широко расставлены, а задние прижаты к хвосту, образуя характерный треугольный силуэт. Меняя натяжение перепонки, летяга маневрирует, иногда изменяя направление полёта на 90°. Хвост в основном выполняет роль тормоза. Посадку на ствол дерева летяга обычно совершает по касательной, как бы сбоку. Перед посадкой принимает вертикальное положение и цепляется всеми четырьмя лапами, после чего сразу перебегает на другую сторону ствола. Этот маневр помогает ей уворачиваться от пернатых хищников.

Задача№2: В полете давление воздуха под крылом самолета 97,8 кН/м 2 , а над крылом 96,8 кН/м 2 . Площадь крыла 20 м 2 . Определить подъемную силу.

Решение: F = PS, где P = P2 – P 1, тогда F = ( P2 – P 1)S, F =20 . 10 3 H

Задача №3. О “крученых мячах” вы прочитаете самостоятельно текст и ответьте на вопросы.

Эффект Магнуса.

  1. Почему движущиеся вращающиеся тела отклоняются от прямолинейной траектории?
  2. Почему давление на мяч с разных сторон различно?
  3. Почему относительная скорость воздушного потока различна по разные стороны мяча?

Можно привести еще множество примеров: бумеранг, летающие тарелки, водоструйный насос, распылители, карбюраторы, катера на подводных крыльях.

А вот посмотрите, какую опасность представляет уменьшение давления для морских судов. Поток воды между судами имеет меньшее давление, чем снаружи. Все моряки знают, что два судна, идущих рядом на больших скоростях сильно притягиваются друг к другу. Еще опаснее, когда один корабль идет за другим. Силы притяжения, возникшие из-за разности давлений, стремятся корабли развернуть . Задний корабль разворачивается сильнее переднего. Столкновение в таких случаях неизбежно.

Задача №4. Очень часто лоцманы жалуются на коварные мели, которые так и притягивают к себе суда. Почему мели на реках притягивают суда?

IV. Закрепление изученного материала

1. Жидкость течет через трубу с переменным поперечным сечением. В каком сечении трубы скорость “v” течения жидкости и ее давление “P” на стенках максимальна?

    v и P максимальны в сечении 1;
  • v и P максимальны в сечении 2;
  • v максимальны в сечении 1, P – в сечении 2;
  • v максимальны в сечении 2, P – в сечении 1;
  • v и P одинаковы во всех сечениях.

2. В какой трубке уровень воды будет выше?

3. Что произойдет, если продувать струю воздуха между двумя шариками от пинг-понга, подвешенными на нитях (смотри рисунок)?

  • Останутся неподвижными;
  • Будут двигаться вместе вправо или влево;
  • Отклонятся друг от друга;
  • Приблизятся друг к другу.

Подводя итог нашего урока, вспомним еще раз основные законы и уравнения, с которыми познакомились на уроке:

  1. Уравнение неразрывности струи – какую зависимость и каких величин оно выражает?
  2. Закон Бернулли – что он утверждает?

V. Рефлексия . Подведение итогов урока.

А теперь настало время дать нашему уроку “физическое” название. Какие будут ваши предложения?

Закон Бернулли как следствие закона сохранения энергии. (Проявление и применение закона сохранения энергии для движущихся потоков жидкости и газов).

VI. Домашнее задание.

Домашнее задание:

  1. Задачи № 404, 406, 409, 410 (Рымкевич А.П. Физика. Задачник. 10-11 классы.- М.: Дрофа, 2003)
  2. Домашняя практическая работа: Сделайте из тонкой бумаги цилиндр диаметром 3 см, длиной 20 см. Положите его на стол на наклонную плоскость. Пронаблюдайте за траекторией, по которой скатывается цилиндр. Объясните наблюдаемое явление.

Основы гидравлики

Уравнение Бернулли — фундамент гидродинамики

Бернулли — вне всякого сомнения — имя, знакомое и специалистам, и обывателям, которые хоть немного интересуются науками. Этот человек оставил ослепительный след в истории познавания человечеством окружающего мира, как физик, механик, гидравлик и просто общепризнанный гений, Даниил Бернулли навсегда останется в памяти благодарных потомков за свои идеи и выводы, которые долгое время существования человечества были покрыты мраком неизведанного.
Открытия и законы, которыми Бернулли осветил путь к познанию истины, являются фундаментальными, и придали ощутимый импульс развитию многих естественных наук. К таковым относится и уравнение Бернулли в Гидравлике, которое он вывел почти три века назад. Данное уравнение является основополагающим законом этой сложной науки, объясняющим многие явления, описанные даже древними учеными, например, великим Архимедом.

Попробуем уяснить несложную суть закона Бернулли (чаще его называют уравнением Бернулли), описывающего поведение жидкости в той или иной ситуации.

Выделим в стационарно текущей идеальной жидкости трубку тока, которая ограничена сечениями S1 и S2 , (рис. 1) .
(Понятие идеальной жидкости абстрактно, как и понятие всего идеального. Идеальной считается жидкость, в которой нет сил внутреннего трения, т. е. трения между отдельными слоями и частицами подвижной жидкости).
Пусть в месте сечения S1 скорость течения ν1 , давление p1 и высота, на которой это сечение расположено, h1 . Аналогично, в месте сечения S2 скорость течения ν2 , давление p2 и высота сечения h2 .

За бесконечно малый отрезок времени Δt жидкость переместится от сечения S1 к сечению S1‘ , от S2 к S2‘ .

По закону сохранения энергии, изменение полной энергии E2 — E1 идеальной несжимаемой жидкости равно работе А внешних сил по перемещению массы m жидкости:

где E1 и E2 — полные энергии жидкости массой m в местах сечений S1 и S2 соответственно.

С другой стороны, А — это работа, которая совершается при перемещении всей жидкости, расположенной между сечениями S1 и S2 , за рассматриваемый малый отрезок времени Δt .
Чтобы перенести массу m от S1 до S1‘ жидкость должна переместиться на расстояние L1 = ν1Δt и от S2 до S2‘ — на расстояние L2 = ν2Δt . Отметим, что L1 и L2 настолько малы, что всем точкам объемов, закрашенных на рис. 1 , приписывают постоянные значения скорости ν , давления р и высоты h .
Следовательно,

где F1 = p1S1 и F2 = — p2S2 (сила отрицательна, так как направлена в сторону, противоположную течению жидкости; см. рис. 1).

Полные энергии E1 и E2 будут складываться из кинетической и потенциальной энергий массы m жидкости:

Подставляя (3) и (4) в (1) и приравнивая (1) и (2) , получим

Согласно уравнению неразрывности для несжимаемой жидкости, объем, занимаемый жидкостью, всегда остается постоянным, т. е.

Разделив выражение (5) на ΔV , получим

где ρ — плотность жидкости.

После некоторых преобразований эту формулу можно представить в другом виде:

Поскольку сечения выбирались произвольно, то в общем случае можно записать:

ρv 2 /2 +ρgh +p = const (6) .

Выражение (6) получено швейцарским физиком Д. Бернулли (опубликовано в 1738 г.) и называется уравнением Бернулли.

Даниил Бернулли (Daniel Bernoulli, 1700 — 1782), швейцарский физик, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750).

Уравнение Бернулли по своей сути является интерпретацией закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Уравнение хорошо выполняется и для реальных жидкостей, для которых внутреннее трение не очень велико.

Величина р в формуле (6) называется статическим давлением (давление жидкости на поверхность обтекаемого ею тела) , величина ρν 2 /2 — динамическим давлением, величина ρgh — гидростатическим давлением.

Статическое давление обусловлено взаимодействием поверхности жидкости с внешней средой и является составляющей внутренней энергии рассматриваемого элементарного объема жидкости (т. е. характеризуется взаимодействием внутренних частиц жидкости, вызванных внешним возмущением — давлением) , а гидростатическое – положением этого объема жидкости в пространстве (зависит от высоты над поверхностью Земли) .
Динамическое давление характеризует кинематическую составляющую энергии этого объема, поскольку зависит от скорости потока, в котором движется рассматриваемый элементарный объем жидкости.

Для горизонтальной трубки тока изменение потенциальной составляющей ρgh будет равно нулю (поскольку h2 – h1 = 0) , и выражение (6) примет упрощенный вид:

ρv 2 /2 + p = const (7) .

Выражение p + ρν 2 /2 называется полным давлением.

Таким образом, содержание уравнения Бернулли для элементарной струйки при установившемся движении можно сформулировать так: удельная механическая энергия при установившемся движении элементарной струйки идеальной жидкости, представляющая собой сумму удельной потенциальной энергии положения и давления и удельной кинетической энергии, есть величина постоянная.

Все члены уравнения Бернулли измеряются в линейных единицах.

В гидравлике широко применяют термин напор, под которым подразумевают механическую энергию жидкости, отнесенную к единице ее веса (удельную энергию потока или неподвижной жидкости) .
Величину v 2 /2g называют скоростным (кинетическим) напором, показывающим, на какую высоту может подняться движущаяся жидкость за счет ее кинетической энергии.
Величину hп = p/ρg называют пьезометрическим напором, показывающим на какую высоту поднимается жидкость в пьезометре под действием оказываемого на нее давления.
Величину z называют геометрическим напором, характеризующим положение центра тяжести соответствующего сечения движущейся струйки над условно выбранной плоскостью сравнения.

Сумму геометрического и пьезометрического напоров называют потенциальным напором, а сумму потенциального и скоростного напора — полным напором.

На основании анализа уравнения Бернулли можно сделать вывод, что при прочих неизменных параметрах потока (жидкости или газа) величина давления в его сечениях обратно пропорциональна скорости, т. е. чем выше давление, тем меньше скорость, и наоборот.
Это явление используется во многих технических конструкциях и устройствах, например, в карбюраторе автомобильного двигателя (диффузор), в форме крыла самолета. Увеличение скорости воздушного потока в диффузоре карбюратора приводит к созданию разрежения, всасывающего бензин из поплавковой камеры, а специальная форма сечения самолетного крыла позволяет создавать на его нижней стороне зону повышенного давления, способствующего появлению подъемной силы.

Геометрическая интерпретация уравнения Бернулли

Поскольку напор измеряется в линейных величинах, можно дать графическую (геометрическую) интерпретацию уравнению Бернулли и его составляющим.

На графике (рис. 2) представлена горизонтальная плоскость сравнения 0-0 , относительно которой геометрический напор будет в каждом сечении равен вертикальной координате z центра тяжести сечения (линия геометрического напора проходит по оси струйки) .
Линия К-К , характеризующая потенциальный напор струйки, получена сложением геометрического и пьезометрического напора в соответствующих сечениях (т. е. разница координат точек линии К-К и соответствующих точек оси струйки характеризует пьезометрический напор в данном сечении) .
Полный напор характеризуется линией MN , которая параллельна плоскости сравнения О-О , свидетельствуя о постоянстве полного напора H’e (удельной механической энергии) идеальной струйки в любом ее сечении.

При движении реальной жидкости, обладающей вязкостью, возникают силы трения между ограничивающими поток поверхностями и между слоями внутри самой жидкости. Для преодоления этих сил трения расходуется энергия, которая превращается в теплоту и рассеивается в дальнейшем движущейся жидкостью. По этой причине графическое изображение уравнения Бернулли для идеальной жидкости будет отличаться от аналогичного графика для реальной жидкости.
Если обозначить hf потери напора (удельной энергии) струйки на участке длиной L , то уравнение Бернулли для реальной жидкости примет вид:

Для реальной жидкости полный напор вдоль струйки не постоянен, а убывает по направлению течения жидкости, т. е. его графическая интерпретация имеет вид не прямой линии, а некоторой кривой МЕ (рис. 3) . Заштрихованная область характеризует потери напора.

Падение напора на единице длины элементарной струйки, измеренной вдоль оси струйки, называют гидравлическим уклоном:

Гидравлический уклон положителен, если напорная линия снижается по течению жидкости, что всегда бывает при установившемся движении.

Для практического применения уравнения Бернулли необходимо распространить его на поток реальной жидкости:

где α1 , α2 — коэффициенты Кориолиса, учитывающие различие скоростей в разных точках сечения потока реальной жидкости.
На практике обычно принимают α1 = α2 = α : для ламинарного режима течения жидкости в круглых трубах α = 2, для турбулентного режима α = 1,04. 1,1.

Из уравнения Бернулли для горизонтальной трубки тока и уравнения неразрывности ( S1v1Δt = S2v2Δt ) видно, что при течении жидкости по горизонтальной трубе, которая имеет различные сечения, скорость жидкости больше в более узких местах (где площадь сечения S меньше) , а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно увидеть, установив вдоль трубы ряд манометров.

Данный опыт показывает, что в манометрической трубке В , которая прикреплена к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С , которые прикреплены к широкой части трубы, что соответствует уравнению Бернулли.

Так как динамическое давление зависит от скорости движения жидкости (газа) , то уравнение Бернулли можно использовать для измерения скорости потока жидкости. Принципиально это свойство жидкости для определения скорости потока реализовано в так называемой трубке Пито – Прандтля (обычно ее называют трубкой Пито ) .

Трубка Пито – Прандтля ( см. рис. 2 ) состоит из двух тонких стеклянных трубок, одна из которых изогнута под прямым углом (Г-образно) , а вторая — прямая.
Одним из свободных концов каждая трубка присоединена к манометру.
Изогнутая трубка имеет открытый свободный конец, направленный против тока и принимающий напор потока жидкости, а вторая погружена в поток перпендикулярно току, и скорость потока на давление внутри трубки не влияет, т. е. внутри этой трубки действует лишь статическая составляющая давления жидкости.
Разница между давлением в первой трубке (полное давление) и второй трубке (статическое давление) , которую показывает манометр, является динамическим давлением, определяемым по формуле:

Определив с помощью трубки Пито — Прандтля динамическое давление в потоке жидкости, можно легко вычислить скорость этого потока:

Уравнение Бернулли также используют для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, с маленьким отверстием в боковой стенке на некоторой глубине ниже уровня жидкости.

Рассмотрим два сечения (на уровне h1 свободной поверхности жидкости в сосуде и на уровне h1 выхода ее из отверстия) и применим уравнение Бернулли:

Так как давления р1 и р2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. р1 = р2 , то уравнение будет иметь вид

Из уравнения неразрывности мы знаем, что ν12 = S2/S1 , где S1 и S2 — площади поперечных сечений сосуда и отверстия.
Если S1 значительно превышает S2 , то слагаемым ν1 2 /2 можно пренебречь и тогда:

Это выражение получило название формулы Торричелли.
Формулу Торричелли можно использовать для подсчета объемного (или массового) расхода жидкости, истекающего из отверстия в сосуде с поддерживаемым постоянно уровнем под действием атмосферного давления.
При этом используется формула Q = vS (для определения массового расхода – m = ρvS ) , по которой определяется расход жидкости за единицу времени.

Если требуется узнать расход жидкости за определенный промежуток времени t , то его определяют, умножив расход за единицу времени на время t .

Следует отметить, что такая методика расчета расхода реальной жидкости через отверстие в стенке сосуда дает некоторые погрешности, обусловленные физическими свойствами реальных жидкостей, поэтому требует применения поправочных коэффициентов (коэффициентов расхода) .

Пример решения задачи на определение расхода жидкости

Определить примерный объемный расход воды, истекающей из отверстия диаметром 10 мм, проделанном в вертикальной стенке широкого сосуда на высоте h = 1 м от верхнего, постоянно поддерживаемого, уровня воды за 10 секунд.
Ускорение свободного падения принять равным g = 10 м/с 2 .
Коэффициент расхода воды через отверстие — µs = 0,62.

По формуле Торричелли определим скорость истечения воды из отверстия:

v = √2gh = √2×10×1 ≈ 4,5 м/с.

Определим расход воды Q за время t = 10 секунд:

Q = µsvSt = 0,62×4,5×3,14×0,012/4 × 10 ≈ 0,0022 м 3 ≈ 2,2 литра.

На практике расход жидкости в трубопроводах измеряют расходомерами, например, расходомером Вентури. Расходомер Вентури (см рис. 2) представляет собой конструкцию из двух конических патрубков, соединенных цилиндрическим патрубком. В сечениях основной трубы и цилиндрического патрубка устанавливают трубки-пьезометры, которые фиксируют уровень жидкости, обусловленный полным давлением в потоке.

При прохождении жидкости через сужающийся конический патрубок часть потенциальной энергии потока преобразуется в кинетическую, и, наоборот, – при прохождении потока по расширяющемуся коническому патрубку, кинетическая энергия уменьшается, а потенциальная растет. Это сказывается на скорости движения жидкости по рассматриваемым участкам. Перепад высоты уровня жидкости в пьезометрах позволяет рассчитать среднюю скорость потока жидкости на рассматриваемых участках и вычислить объемный расход по внутреннему сечению трубы.
В расходомерах учитываются потери напора в самом приборе при помощи коэффициента расхода прибора φ .

Уравнение Бернулли — вывод формулы, физический смысл, примеры использования

Исследования учёного

Даниил Бернулли родился в Голландии в 1700 году. В 1725 году он начал работать на кафедре физиологии, где увлёкся основами теоретической физики. Через 25 лет он возглавил кафедру экспериментальной физики, которой и руководил до конца своих дней. Основным его трудом считается создание теории гидродинамической зависимости, известной как Закон Бернулли. Открытие учёного предвосхитило зарождение молекулярно-кинетического учения поведения газов.

Причиной открытия принципа стало изучение действия закона сохранения энергии в различных ситуациях. Бернулли установил, что давление жидкости в замкнутом пространстве зависит от сечения объекта, в котором она находится. Чем меньше сечение трубы, тем ниже будет созданное давление в пропускаемом через неё жидком веществе.

Этот факт был доказан экспериментально и описан математически.

Правило в математической формулировке имеет вид (pv 2 / 2) + p * g * h + ρ = const, где:

  • p — количество жидкости на единицу объёма;
  • v — скорость движения потока;
  • h — уровень, на который поднят элемент жидкости;
  • ρ — сила, действующая на единицу площади;
  • g — ускорение, придаваемое жидкости под действием притяжения Земли.

Чтобы понять физический смысл уравнения Бернулли, нужно рассмотреть трубу переменного сечения, в которой существует точка А и Б. Первая располагается в широкой части, а вторая — в узкой. В соответствии с уравнением непрерывности скорость V1 в части трубы, имеющей большее сечение, будет меньше, чем скорость жидкости V2 в узком сечении. Если в жидкость поместить прибор для измерения давления, он покажет какое-то значение P1 в точке A и P2 в точке Б. При этом там, где скорость движения жидкости медленнее, давление будет больше.

Объясняется это следующим образом: если V1 больше V2, значит, при движении происходит изменение скорости течения. Представив, что в жидкости находится точка, можно утверждать о её движении с ускорением. Это означает, что на неё действуют силы.

Одна из них совпадает с направлением течения, тем самым ускоряя движение. Обусловлена эта сила разностью давления.

Так как движение происходит от точки А к Б, то и давление возле А будет больше, чем около Б. Эта разность давлений и приводит к ускорению.

Условия действия

Закон применим для условия, при котором соблюдается неразрывность струи воздуха или жидкости. В тех участках потока, где скорость течения больше, давление будет меньше и наоборот. Это утверждение и называется теоремой Бернулли. По сути, закон позволяет установить связь между давлением, скоростью, высотой.

Пусть имеется труба переменного сечения с изменяющейся высотой. Внизу она широкая, а затем сужается. По ней течёт жидкость. Площадь сечения можно обозначить как S1 и S2, а давление участков и скорость движения на них P1, P2, V1, V2. Высота внизу будет равняться S1, а вверху S2.

Выделив участок в трубе с жидкостью, можно сказать, что она движется слева направо и через некоторое время полностью сдвинется в область S2. Изменение положения слева будет равно расстоянию дельта L1, а справа — дельта L2.

Течение является:

  • ламинарным — находящаяся в трубке жидкость перемешивается слоями без хаотических изменений давления и скорости, турбулентность отсутствует;
  • стационарным — распределение скоростей не изменяется с течением времени;
  • скоростным — в движении принимает участие такой параметр, как ускорение;
  • идеальным с несжимаемой жидкостью.

Последнее обозначает, что нет вязкости. Поэтому на жидкость действует только сила упругости и тяжести, а силы трения нет. Система не является замкнутой, а значит закон сохранения энергии применительно к рассматриваемому участку использовать нельзя. Зато вполне можно применить теорему о кинетической энергии.

Для газов уравнение можно использовать лишь в том случае, если их плотность изменяется незначительно. Но касаемо аэродинамики учитывается и то, что изменение давления воздуха гораздо меньше атмосферного. Поэтому уравнение можно применять в аэродинамических расчётах.

Согласно ему, сумма действующих всех сил на тело (рассматриваемый кусок жидкости) равняется изменению кинетической энергии объекта: ΣAi = ΔEk. На нижний участок действует сила давления, выполняющая положительную работу, а на верхний — отрицательную. Кроме этого, действует и сила тяжести. Так как жидкость поднимается, она имеет тоже отрицательный знак. Сила бокового давления перпендикулярна любой точке в системе, поэтому никакого влияния она не оказывает.

Количественная сторона

Исходя из сил, действующих на тело, изменение кинетической энергии можно описать выражением: ΔEk = Ap1 +Ap2 +Ag. Чтобы найти работу, необходимо силу умножить на пройденное расстояние. Поэтому работа силы давления равна произведению самой силы F на модуль перемещения ΔL и косинусу угла между ними: Ap1 = F1* ΔL *1.

Чтобы найти силу, нужно давление умножить на площадь. Значит: Ap1 = p 1 * S1 * ΔL1 = p1V1. Таким же образом находится работа для второго состояния: Ap2 = F1* ΔL2 *(-1) = — p2 * S2 * ΔL2 = -p2 * V2. Жидкость несжимаемая, следовательно: V1=V2=V.

Работу силы тяжести можно вычислить исходя из того, что рассматриваемый кусок жидкости является относительным, то есть он, хотя и не статический, в любом месте будет подвергаться воздействию одинаковой силы тяжести. Верным будет выражение: Ag = — ΔEp = — (m2 * g * h2 — m1 * g * h1) = m1 * g * h1 — m2 * g * h2. Так как жидкость несжимаемая, её плотность не изменится. Отсюда можно утверждать: Ag = ρ * V * g * h1 — ρ * V * g * h2.

Зная количественные показатели всех трёх работ, можно найти изменение кинетической энергии. Из физики известно, что оно равно разнице конечной и начальной энергии. Течение стационарное, значит, скорость с течением времени не изменится. Следовательно, кинетическая энергия будет определяться разницей появившейся энергии в верхней части и ушедшей из нижней области: ΔEk = (m2 * v2 2 )/2 — (m1 * v1 2 ) / 2.

Воспользовавшись тем, что масса равняется произведению плотности на объём, формулу можно привести к виду: ΔEk = (ρ * V * v2 2 )/2 — (ρ * V * v1 2 ) / 2. Теперь найденные выражения для работ нужно подставить в теорему о кинетической энергии. Получится следующее равенство: p1V — p2V + ρ * V * g * h1 — ρ * V * g * h2 = (ρ * V * v2 2 ) / 2 — (ρ * V * v1 2 ) / 2. Разделив левую и правую часть на объём, выражение можно упростить до вида: p1 — p2 + ρ * g * h1 — ρ * g * h2 = (ρ * v2 2 )/2 — (ρ * v1 2 ) / 2 .

То место, где давление p1, некая точка внутри трубки, пусть будет обозначено цифрой один, а там, где p2, — цифрой два. Всё что относится к единице можно записать в левой части, а к двойке — в правой: ρ1 * g * h1 + (ρ * v1 2 ) / 2 = ρ * g * h2 + (ρ * v2 2 ) / 2. Полученная формула показывает, что при переходе в пределе одной линии скорость, давление и высота изменяются. Поэтому в любой точке будет справедливым выражение: ρ1+ ρ * g * h + (ρ * v1) / 2 = const. Это и есть количественное описание уравнения Бернулли для идеальной жидкости.

Применение в гидравлике

Наиболее типичным примером использования уравнения является решение заданий по нахождению скорости вытекания жидкости из отверстия в широком сосуде. Такой ёмкостью называют систему, в которой диаметр сосуда значительно больше размера отверстия. Необходимо найти скорость вытекающей жидкости U1. Известно, что высота столба жидкости, на который действует сила тяжести g, равна h.

Пусть в жидкости, находящейся сверху, имеется точка один. Через некоторое время она окажется внизу в положении два. На верх жидкости давит атмосферное давление, поэтому p1=pатм. Высота в точке один равна h. Скорость U1 считают равной нулю. Давление p2 в точке два будет также равно атмосферному. Так как жидкость опустится на дно, то высота h2 станет нулевой.

Все эти величины следует подставить в уравнение Бернулли. Получится выражение: pатм + ρ * g * h + 0 = pатм + (ρ * U 2 ) / 2 + 0. Атмосферное давление взаимно уничтожается: ρ * g * h = (ρ * U 2 ) / 2. В левой и правой части стоит плотность, на которую можно сократить. Отсюда получается, что вид жидкости значения не имеет. Это может быть: вода, ртуть, расплавленный металл. Эффект от этого не поменяется. Из формулы можно выразить искомое U2. Оно будет равно: U2 = (2 * g * h) ½ .

Интересным фактом является то, что полученный ответ при решении задачи называется формулой Торричелли. Она показывает, что скорость, с которой вытекает жидкость из широкого сосуда, равна скорости тела при свободном падении с той же высоты.

Используя уравнение, можно легко рассчитать давление жидкости на дно и стенки сосуда. В этом случае закон Бернулли является обобщением для формулы гидростатического давления. Пусть имеется сосуд с жидкостью высотой h. Точка, находящаяся наверху, характеризуется давлением p1 = pатм., высотой h1 равной h и скоростью U1. Для точки на дне параметры будут следующие: p2 = p, h2 = 0, U2 = 0. Скорости принимаются равными нулевому значению, так как рассматриваемая жидкость находится в состоянии покоя.

Данные следует подставить в уравнение. В итоге получится равенство: pатм + ρ * g * h + 0 = p + 0 + 0. Из него несложно найти неизвестное: p = pатм + ρ * g * h. Полученный ответ является формулой гидростатического давления и подтверждает закон Паскаля.

Аналогично уравнение Бернулли для потока реальной жидкости используется при расчёте расхода в карбюраторе, пульверизаторе, учёте статического и динамического давления.

Подъёмная сила

Самолёт летает благодаря тому, что набегающий на крыло напор воздуха создаёт подъёмную силу. Её можно рассчитать и оценить с помощью уравнения. Геометрически крыло можно представить в виде плоскости с углом a (угол атаки). На него действует поток воздуха со скоростью U. Частица воздуха ударяет в твёрдую поверхность и отражается от неё. Угол отражения равен углу атаки, а её скорость равняется U’. Нужно рассчитать подъёмную силу. Для этого необходимо выполнить три шага:

  • рассмотреть изменение скорости воздуха;
  • узнать импульс частиц;
  • используя закон Ньютона, определить силу.

В результате получится, что на крыло действует сила, состоящая из двух компонентов: подъёмной силы Fy и аэродинамического сопротивления Fx. Fy = Cy * p * U 2 * S, а Fx = Cx * p * U 2 * S. В формулах С является коэффициентом, а S — площадью крыла.

Для расчёта используется уравнение Бернулли. Выглядеть оно будет следующим образом: Pп. к + (ρ * Uп. к) * 2 / 2 + ρ * g * hп. к = Pн. к + (ρ * Uн. к) * 2 / 2 + ρ * g * hн. к, где: п. к — под крылом, а н. к — над крылом. Это уравнение можно упростить, приняв, что давления над и под крылом примерно одинаковые, поэтому плотность будет также одинаковая. Кроме того, высота крыла довольно маленькая. Исходя из этого, формулу можно упростить, и она примет вид: pп. к-pн.к = (ρ * (Uн.к + Uп. к) * (Uн.к — Uп. к)) / 2 = 2 * U1 * U2. Теперь можно найти подъёмную силу. Для этого разность давлений нужно умножить на площадь крыла: Fy = (pп.к-pн. к) * S.

Таким образом, используя метод, можно рассчитать подъёмную силу, обусловленную эффектом Бернулли. Например, пусть дано, что площадь крыла равна 50 м². Скорость потока воздуха над крылом и под ним соответственно равны: U1 = 320 м/с, U2 = 290 м/с. Найти грузоподъёмность. Для решения задания нужно знать дифференциальную плотность воздуха. Это справочная величина, равная 1,29 кг/м3.

Используя уравнение Бернулли, можно записать: pп. к-pн.к = ρ * (U2н.к — U2п. к). Подъёмная сила равна площади крыла, умноженной на разность давления. Подставив одно выражение в другое, получим рабочую формулу: Fy = ρ * (U2н.к — U2п. к) * S / 2. После выполнения расчёта получится ответ 590 кН. То есть грузоподъёмность самолёта составит порядка 59 тонн.

Реальные вычисления для таких задач довольно сложные, поэтому часто используют онлайн-калькуляторы.


источники:

http://k-a-t.ru/gidravlika/7_Bernulli/

http://nauka.club/fizika/uravneniye-bernulli.html