Вывод уравнения для дзета потенциала

Please wait.

We are checking your browser. medium.com

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6df421546f9a163d • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Дзета-потенциал. Двойной электрический слой.

В дисперсных системах на поверхности частиц (на границе раздела частица-дисперсионная среда) возникает двойной электрический слой (ДЭС). Двойной электрический слой представляет собой слой ионов, образующийся на поверхности частицы в результате адсорбции ионов из раствора или диссоциации поверхностных соединений. Поверхность частицы приобретает слой ионов определенного знака, равномерно распределенный по поверхности и создающий на ней поверхностный заряд. Эти ионы называют потенциалопределяющими (ПОИ). К поверхности частицы из жидкой среды притягиваются ионы противоположного знака, их называют противоионами (ПИ).

Таким образом, двойной электрический слой состоит из потенциалопределяющих ионов и слоя противоионов, расположенных в дисперсионной среде. Слой противоионов состоит из двух слоев:

  • Адсорбционный слой (плотный слой), примыкающий непосредственно к межфазной поверхности. Данный слой формируется в результате электростатического взаимодействия с потенциалопределяющими ионами и специфической адсорбции.
  • Диффузный слой, в котором находятся противоионы. Эти противоионы притягиваются к частице за счет электростатических сил. Толщина диффузного слоя зависит от свойств системы и может достигать больших значений.

При движении частицы двойной электрический слой разрывается. Место разрыва при перемещении твердой и жидкой фаз друг относительно друга называется плоскостью скольжения. Плоскость скольжения лежит на границе между диффузными и адсорбционными слоями, либо в диффузном слое вблизи этой границы. Потенциал на плоскости скольжения называют электрокинетическим или дзета-потенциалом ( ζ -потенциал).

Другими словами, дзета-потенциал — это разность потенциалов дисперсионной среды и неподвижного слоя жидкости, окружающего частицу.

Теории двойного электрического слоя широко используются для интерпретации поверхностных явлений. Однако не существует прямых методов измерения потенциалов на границе адсорбционного слоя. Для количественного определения величины электрического заряда в двойном электрическом слое широко используется дзета-потенциал. Дзета-потенциал не равен адсорбционному потенциалу или поверхностному потенциалу в двойном электрическом слое. Тем не менее, дзета-потенциал часто является единственным доступным способом для оценки свойств двойного электрического слоя. Знание дзета-потенциала важно во многих областях производственной и исследовательской деятельности.

Строение двойного электрического слоя

Образование двойного электрического слоя приводит к появлению электрического потенциала, который убывает с расстоянием, и его значение в разных точках соответствует:

  • Поверхностному потенциалу φ
  • Потенциалу адсорбционного слоя φδ
  • Дзета-потенциалу ζ

Важность определения дзета-потенциала

Важность дзета-потенциала состоит в том, что его значение может быть связано с устойчивостью коллоидных дисперсий. Дзета-потенциал определяет степень и характер взаимодействия между частицами дисперсной системы.

Для молекул и частиц, которые достаточно малы, высокий дзета-потенциал будет означать стабильность, т.е. раствор или дисперсия будет устойчивы по отношению к агрегации. Когда дзета-потенциал низкий, притяжение превышает отталкивание, и устойчивость дисперсии будет нарушаться. Так, коллоиды с высоким дзета-потенциалом являются электрически стабилизированными, в то время, как коллоиды с низким дзета-потенциалом склонны коагулировать или флокулировать.

Значение дзета-потенциала равное 30 мВ (положительное или отрицательное) можно рассматривать как характерное значение, для условного разделения низко-заряженных поверхностей и высоко-заряженных поверхностей. Чем больше электрокинетический потенциал, тем устойчивее коллоид.

ЭЛЕКТРОКИНЕТИЧЕСКИЙ ПОТЕНЦИАЛ

Тема 2. Свойства дисперсных систем,

Их устойчивость и коагуляция

Электрические свойства дисперсных систем

СОДЕРЖАНИЕ

1. Электрокинетический потенциал.

2. Теории строения двойного электрического слоя.

ЛИТЕРАТУРА

1. Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. – М.: Высш. шк., 2006. – С. 139 – 154, 172 – 190.

2. Гельфман М.И., Ковалевич О.В., Юстратов В.П. Коллоидная химия. – СПб.: «Лань», 2003. – С. 106 – 116.

НАГЛЯДНЫЕ ПОСОБИЯ И ПРИЛОЖЕНИЯ:

1. Cвойства дисперсных систем.

2. ДЭС по теории Гельмольца-Перрена.

3.. ДЭС по теории Гуи-Чэпмена.

4.. ДЭС по теории Штерна.

5. Факторы, влияющие на дзета-потенциал.

6. Электрокинетический потенциал.

ВВЕДЕНИЕ

Мы продолжаем изучение темы № 2 «Свойств дисперсных систем, их устойчивость и коагуляция». На прошлых лекциях были рассмотрены молекулярно-кинетические, оптические, а также электрические свойства дисперсных систем, которые проявляются в виде электрокинетических явлений (рисунок 1).

Рис. 1. Свойства дисперсных систем

Сегодня мы продолжим рассмотрение электрических свойств, ознакомимся с понятием электрокинетический потенциал, детально рассмотрим строение двойного электрического слоя и, как следствие, изучим строение коллоидной мицеллы. Материал сегодняшней лекции является основополагающим для рассмотрения вопроса устойчивости дисперсных систем и их разрушения – одного из центральных вопросов физики поверхности.

ЭЛЕКТРОКИНЕТИЧЕСКИЙ ПОТЕНЦИАЛ

Как мы показали на прошлой лекции на частицах дисперсной фазы, помещенных в жидкую дисперсионную среду, практически всегда возникает заряд (рисунок 2).

1.Избыток КСI 2. Избыток AgNO3

Рисунок 2. Возникновение заряда на поверхности частиц

Возникновение заряда на поверхности твердого тела приводит к тому, что на границе раздела фаз (между твердой частицей и раствором) возникает электрический потенциал. Его обозначают через j и называют термодинамическим или электрохимическим потенциалом. Ионы, из-за которых на поверхности частиц возникает заряд, называются потенциалобразующими (или потенциалопределяющими).

Однако в электрокинетических явлениях проявляется потенциал меньше, чем термодинамический. Электрокинетическим или дзета-потенциалом называют потенциал, который проявляется на границе скольжения при перемещении частиц дисперсной фазы относительно дисперсионной среды (например, в электрическом поле). Его обозначают буквой z (дзета). Было установлено, что частица дисперсной фазы при движении увлекает за собой часть жидкости, которая перемещается вместе с частицей, и z- потенциал возникает на границе скольжения. Граница скольжения отделяет неподвижную, связанную с твердой частицей жидкую фазу от остальной жидкой фазы, относительно которой происходит перемещение дисперсных частиц (рисунок 3).

Рис. 3. Граница скольжения между дисперсной частицей

(вместе с прилегающим слоем) и дисперсионной средой

Расстояние от поверхности частицы до границы скольжения определяется в первую очередь вязкостью дисперсионной среды. Таким образом, термодинамический потенциал возникает на границе между частицей и дисперсионной средой, а электрокинетический — на границе скольжения.

Электрокинетический потенциал – важная характеристика дисперсной системы. Он определяет скорость перемещения дисперсной фазы и дисперсионной среды, интенсивность электрокинетических явлений, устойчивость золей и разрушение их электролитами. Величину электрокинетического потенциала можно достаточно точно измерить по данным электрофореза или электроосмоса. Его знак определяется знаком заряда потенциалопределяющего слоя: если слой формируется анионами, то z- потенциал будет отрицательным, если он образуется из катионов, то отрицательным.

1. Расчет z- потенциала по данным электрофореза.

,

где u – скорость перемещения частиц дисперсной фазы, м/с

(можно наблюдать визуально и измерить);

h – коэффициент вязкости среды, н . с/ м 2 ;

y – коэффициент, учитывающий форму частиц (для сферических –

0,66; для цилиндрических – 1);

e – относительная диэлектрическая проницаемость среды;

eо – абсолютная диэлектрическая проницаемость вакуума

(8,85 . 10 -12 К 2 /Н . м 2 );

Е – напряженность внешнего электрического поля, В/м.

Таким образом, электрокинетический потенциал довольно просто определить экспериментально по скорости перемещения дисперсной фазы в электрическом поле с известным значением напряженности. Электрокинетический потенциал обычно не превышает 100 мВ.

2. Расчет z- потенциала по данным электроосмоса.

,

где Q – oбъемная скорость электроосмоса, м 3 /с

(объем раствора, протекающего через пористую мембрану

за единицу времени);

h – коэффициент вязкости среды, н . с/ м 2 ;

c – удельная электропроводность, См/м;

e – относительная диэлектрическая проницаемость среды;

eо – абсолютная диэлектрическая проницаемость вакуума

(8,85 . 10 -12 К 2 /Н . м 2 );

I – сила тока, при которой проводился осмос, А.

Таким образом, чтобы определить величину электрокинетического потенциала z по данным электроосмоса надо экспериментально определить объем жидкости, перенесенной через пористую мембрану, удельную электропроводность раствора и силу тока, при которой проводился электроосмос.

Величина электрокинетического потенциала влияет на устойчивость дисперсных систем, на скорость электрофореза и электроосмоса. Величину z- потенциала можно изменить в соответствии с поставленными целями. Для этого необходимо знать факторы, влияющие на z- потенциал.

Факторы, влияющие на z- потенциал

1. Величина термодинамического потенциала j (чем больше j, тем больше z);

2. Концентрация индифферентного электролита в растворе (z- потенциал может сильно уменьшиться, даже до 0, или переменить знак на противоположный);

3. рН раствора (в некоторых случаях).

Чтобы понять причины влияния этих факторов на z- потенциал, необходимо рассмотреть строение двойного электрического слоя.


источники:

http://www.photocor.ru/theory/zeta-potential

http://poisk-ru.ru/s211t10.html