Вывод уравнения поперечных колебаний струны

Уравнение колебаний струны

ГЛ А В А 1

УРАВНЕНИЯ КОЛЕБАНИЙ

Уравнение колебаний струны

4. Вывод уравнения колебаний струны. Пусть конеч­ные точки струны закреплены, а сама струна туго натянута. Если вывести струну из положения равновесия (например, оттянуть ее или ударить по ней), то струна начнет коле­баться. Будем предполагать, что все точки струны движутся перпендикулярно ее положению равновесия (поперечные коле­бания), причем в каждый момент времени струна лежит в одной и той же плоскости.

Возьмем в этой плоскости систему прямоугольных коор­динат хОи. Тогда, если в начальный момент времени струна располагалась вдоль оси Ох, то и будет означать отклонение струны от положения равновесия. В процессе колебания ве­личина отклонения u бу­дет означать отклонение струны от положения равновесия. В процессе колебания величина отклонения u будет зависеть от абсциссы точки струны x и от вре­мени t. Таким образом, чтобы знать положение любой точки струны в произвольный момент времени, нам надо найти зависимость u от х и t, т. е. найти функцию u(x, t). При каждом фиксированном значении t график функции u(x, t) представляет форму колеблющейся струны в момент времени t (рис. 1), частная производная

дает при этом угловой коэффициент касательной в точке с абсциссой х. При изменении t форма струны, очевидно, изменяется, и, чтобы представить себе процесс колебаний, мы должны построить несколько гра­фиков функции u(x, t) при различных значениях t, т. е. сделать несколько мгновенных снимков колеблющейся струны. При постоянном значении x функция u(x, t) дает закон дви­жения точки с абсциссой х вдоль прямой, параллельной оси Оu, производная — скорость этого движения, а вторая производная -ускорение.

Наша задача состоит в том, чтобы составить уравнение, которому должна удовлетворять функция u (х, t). Для этого сделаем предварительно несколько упрощающих предположе­ний. Будем считать струну абсолютно гибкой, т. е. не сопротивляющейся изгибу; это означает, что если удалить часть струны, лежащую по одну сторону от какой-либо ее точки, то сила натяжения Т, заменяющая действие удалённый части, всегда будет направлена по касательной к струне (рис. 1). Струна предполагается упругой и подчиняющейся закону Гука; изменение величины силы натяжения при этом пропорционально изменению длины струны. Примем, что струна однородна; линейную плотность ее обозначим бук­вой ( — масса единицы длины cтруны ).

Предположим, далее, что па струну в плоскости колеба­ния действуют силы, параллельные оси Ои, которые могут меняться вдоль струны и со временем. Силы эти будем счи­тать непрерывно распределенными вдоль струны; величину силы, направленной вверх, условимся считать положительной, а вниз — отрицательной. Плотность распределения этих сил вдоль струны 1 `) является функцией абсциссы х и времени t; обозначим ее через (g x, t). Если, в частности, единствен­ной внешней силой является вес струны, то q(x, t)=—pg, где р—плотность струны, a g — ускорение силы тяжести.

Силами сопротивления среды, в которой колеблется струна, мы пока пренебрегаем.

1) Плотность распределения параллельных сил, изменяющихся вдоль линии, определяется как предел отношения величины равно­действующей этих сил, приложенных к малому участку, к длине участка при условии, что участок стягивается в точку. Это опре­деление совершенно аналогично определению обычной плотности.

Мы будем изучать только малые колебания струны. Если обозначить через α(x,t) острый угол между осью абсцисс и касательной к струне в точке с абсциссой х в момент времени t, то условие малости колебаний заключается в том, что величиной α 2 (x,t)можно пренебрегать:

Поскольку разложение функции sin α в ряд Маклорена имеет вид

то в силу условия (1.1) можно считать, что

Далее, и, следовательно,

И наконец, tg α — sin α =

= tg α (1—Cos α) ≈0 и

Так как ,то в си­лу полученных условий заклю­чаем, что 1 )

(1.5)

Отсюда сразу следует, что в процессе колебания мы можем пренебречь изменением длины любого участка струны. Действительно, длина участка М1M2 в момент времени t (рис. 2) равна

[1.6]

1) Подобного рода предположения встречаются и в различных других задачах. Так, при изучении движения кругового маятника максимальный угол отклонения маятника считают настолько малым, что его можно принять равным синусу; при рассмотрении изгиба балки (в курсе сопротивления материалов) кривизну нейтральной линии считают равной второй производной от неизвестной функции (уравнения этой линии), пренебрегая квадратом первой производ­ной и т.д.

Согласно (1.5) заключаем, что

[1,7]

Покажем теперь, что при наших предположениях вели­чину силы натяжения Т можно считать постоянной, не зависящей ни от точки ее приложения, ни от вре­мени t. Возьмем для этого какой-либо участок струны

[1.8]

(рис. 3) в момент времени t и заменим действие отброшен­ных участков силами натяжений T1 и T2. Так как по усло­вию все точки струны движутся параллельно оси Ои и внешние силы также параллельны этой оси, то сумма проек­ций сил натяжения на ось Ох должна равняться нулю:

Отсюда в силу (1.3) заключаем, что T1= T2. Так как точки M1 и M2 выбраны произвольно, то это и доказывает, что в данный момент времени силы натяжения во всех точках равны между собой.

Поскольку мы пренебрегаем изменением длины любого участка струны, то в силу закона Гука неизменным остается и натяжение струны. Итак, мы показали, что в пределах выбранной точности Т есть величина постоянная:

Перейдем теперь к выводу уравнения колебаний струны. Выделим бесконечно малый участок струны проекти­рующийся в интервал оси абсцисс (рис. 4). На него действуют силы натяжения T1иT2 , заменяющие влияние

Отброшенных частей струны. Как уже отмечалось выше, силыT1 и T2 направлены по касательным к струне в точках M1 и M2 ;величина этих сил постоянно равна T0 .Согласно равенству (1.8) сумма проекций сил Т1и Т2 на ось Ox равна нулю. Вычислим сумму проекций этих же сил на ось Ou:

В силу (1.4)можно записать, что

[1.10]

Здесь мы заменили частное приращение производной при переходе от аргументов (x, t) к аргументам (x+dx, t) ее частным дифференциалом, т. е.

Примечание. Если бы участок струны M1М2 располагался, как на рис. 2, то сумма проекций сил Т1 и Т2 равнялась бы Т0 (— sin α2 — sinα1 ); но теперь sin α2 = — ux (х +dx, t), и в резуль-тате мы снова получили бы формулу (1.10).

Равнодействующую внешних cил, приложенных к участку M1M2 в момент времени t, обозначим через F. Согласно определению функции g(x,t) и приближенному равенству (1.7) можно считать, что

Направление равнодействующей F определится знаком функции g(x, t) (направление F на рис. 4 соответствует случаю g(x, t) 1 ). Однако наиболее существенные черты процесса все-таки часто удается уловить, и дальнейшая задача проектировщика в том и состоит, чтобы увязать на­блюденные на модели факты с теми, которые встретятся в натуре.

Подобную же роль в физике играет и изучение дифферен­циальных уравнений математической физики. Учитывая основ­ные закономерности физического процесса, мы создаем его ма­тематическую модель. Изучение этой модели и позво­ляет делать определенные суждения о характере процесса. Образно говоря, в настоящей книге мы знакомим читателя только с основными методами изучения математических моделей, оставаясь, так сказать, в «лабораторных усло­виях математики-».

5. Постановка начальных и краевых условий. Как уже отмечалось во введении, дифференциальные уравнения с част­ными производными второго порядка имеют бесчисленное мно­жество решений, зависящих от двух произвольных функций. Чтобы определить эти произвольные функции, или, иначе говоря, выделить необходимое нам частное решение, нужно на искомую функцию u(x,t) наложить дополнительные усло­вия. С аналогичным явлением читатель встречался уже при решении обыкновенных дифференциальных уравнений, когда выделение частого решения из общего заключалось в процессе отыскания произвольных постоянных по начальным условиям.

1) Вопросу о подобии явлений, протекающих в модели и в натуре, посвящена обширная литература.

При рассмотрении задачи о колебаниях струны дополни­тельные условия могут быть двух видов: начальные и кра­евые (или граничные).

Начальные условия показывают, в каком состоянии нахо­дилась струна в момент начала колебания. Удобнее всего считать, что струна начала колебаться в момент времени t=0. Начальное положение точек струны задается условием

,

а начальная скорость

,

где f (х) и F(x) — заданные функции.

Запись означает, что функция u(х, t) взята при произвольном значении х и при t=0, т. е. u |t=0 = u(x> 0);

Аналогично . Такая форма записи постоянно применяется в дальнейшем; так, например , ) и т.д. ­

Условия (1.13) и (1.14) аналогичны начальным условиям в простейшей задаче динамики материальной точки. Там для определения закона движения точки, помимо дифференциаль­ного уравнения, нужно знать начальное положение точки и ее начальную скорость.

Иной характер имеют краевые условия. Они показывают, что происходит на концах струны во все время колебаний. В простейшем случае, когда концы струны закреплены (начало струны— в начале координат, а конец — в точке (l, 0)), функция и(х,t) будет подчиняться условиям

С такими же точно условиями читатель встречался в курсе сопротивления материалов при изучении изгиба балки, лежа­щей на двух опорах, под действием статической нагрузки.

Физический смысл того факта, что задание начальных и краевых условий полностью определяет процесс, проще всего проследить для случая свободных колебаний струны.

Пусть, например, струпу, закрепленную на концах, как-то оттянули, т. е. задали функцию f(x) — уравнение начальной формы струны, и отпустили без начальной скорости (это значит, что F(x)≡0). Ясно, что этим самым дальнейший ха­рактер колебаний будет полностью определен и мы найдем единственную функцию и(х,t ) решая однородное уравнение при соответствующих условиях. Можно заставить струну ко­лебаться и иначе, а именно придав точкам струны некоторую начальную скорость. Физически ясно, что и в этом случае дальнейший процесс колебаний будет вполне определен. При­дание точкам струны начальной скорости может быть осущест­влено при помощи удара по струне (как это имеет место при игре на рояле); первый способ возбуждения струны применяется при игре на щипковых инструментах (например, гитаре).

Сформулируем теперь окончательно математическую за­дачу, к которой приводит изучение свободных колебаний струны, закрепленной на обоих концах.

Требуется решить однородное линейное дифферен­циальное уравнение с частными производными второго порядка с постоянными коэффициентами

при начальных условиях

U|t=0=f(x),

и краевых условиях

Функции f(x) и F(x) определены па интервале [0, l] и, как это следует из первого условия (1.17) и условий (1.18), f(0)=f(l)=0.

Можно доказать, не опираясь на физические представле­ния, что при некоторых ограничениях, наложенных на функ­ции f(x) и F(x), эта задача имеет единственное решение.

Примечание. Решение поставленной математической задачи будет отражать реальный характер процесса колебании лишь в том случае, когда начальное смещение и начальные скорости точек струны настолько малы, что соблюдаются нее высказанные ранее предположения. Имея а виду в дальнейшем главным образом мате­матическою сторону вопроса, мы при решении конкретных приме­ров обращать на это внимания не будем.

Дата добавления: 2015-04-11 ; просмотров: 25 | Нарушение авторских прав


источники:

Читайте также:
  1. R-виды стратегий и их роль в сукцессионных процессах (график и уравнение роста, сильные и слабые стороны стратегий).
  2. Автоколебания.Генератор незатухающих колебаний.
  3. Волной называется . а) процесс распространения колебаний в пространстве
  4. Вопрос №1 Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.
  5. Вопрос №1 Уравнение состояния идеального газа. Изопроцессы.
  6. Вопрос №1 Фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике
  7. Вопрос №2 Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.
  8. Вопрос №2 Уравнение состояния идеального газа. Изопроцессы.
  9. Вопрос №2 Фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике
  10. Глава 3. Уравнение Шредингера