Вывод уравнения прямой 9 класс

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Разработка урока по геометрии «Уравнение прямой»(9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Конспект урока Уравнение прямой.docx

Муниципальное автономное общеобразовательное учреждение

средняя общеобразовательная школа № 45

Разработка урока по теме

геометрия, 9 класс.

Автор: учитель математики

МАОУ СОШ №45 г. Калининграда

Борисова Алла Николаевна.

2017 – 2018 учебный год

Автор – Борисова Алла Николаевна

Образовательное учреждение – муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 45 города Калининграда

Предмет – математика (геометрия)

Тема – «Уравнение прямой»

Геометрия, 7 — 9: учебник для общеобразовательных учреждений/ Л. С. Атанасян и др., — 17 — е изд., — М.: Просвещение, 2016 г.

Рабочая тетрадь «Геометрия, 8 класс», авторы Л. С. Атанасян, В. Ф. Бутузов, Ю.А. Глазков, И.И. Юдина/ учебное пособие для учащихся общеобразовательных учреждений/ — М. Просвещение, 2016 г.

Данные о программах, в которых выполнена мультимедийная составляющая работы — Microsoft Office Power Point 2010

Цель: вывести уравнение прямой и показать применение уравнения прямой при решении задач.

вывести уравнение прямой;

научить пользоваться новыми знаниями при составлении и построении прямой.

развить умения и навыки при составлении уравнения прямой;

развитие познавательного интереса к предмету;

продемонстрировать учащимся межпредметные связи, возможность применения полученных знаний в других предметных областях;

развивать образное и логическое мышление;

развивать коммуникативные компетенции.

в оспита ть настойчивости в достижении цели .

воспитание познавательной активности, культуры общения, ответственности, самостоятельное развитие зрительной памяти;

п ривит ь учащимся навыков самостоятельной работы ;

оптимизировать обучение путем разумного сочетания и соотношения методов, средств и форм, направленных на получение высокого результата за время урока.

Оборудование и материалы для урока : проектор, экран, презентация для сопровождения урока.

Тип урока: урок изучения нового материала.

1) Учащимся сообщается тема урока и цели, подчеркивается актуальность данной темы (слайд №1).

2) Объявляется план урока.

1. Проверка домашнего задания.

3. Открытие нового знания.

II . Проверка домашнего задания.

Проверить наличие выполненных домашних заданий и ответить на вопросы, которые возникли у учеников во время их выполнения.

I V. Введение нового материала.

1. Вывести уравнение прямой в заданной прямоугольной системе координат: ах+ву+с=0

Вывод: у равнением любой прямой в прямоугольной системе координат является уравнение первой степени с двумя переменными (слайд №4) .

2.Рассмотреть частные случаи уравнения прямой, проходящей через точку

а) уравнение горизонтальной прямой, параллельной оси Ох ,

б) уравнение вертикальной прямой, параллельной оси Оу ,

и рассмотреть примеры.

V . Закрепление изученного материала.

1) Первичное закрепление.

Разобрать решение задачи (слайды № 10 — 11) .

Напишите уравнение прямой, которая проходит через точки Р(2; 1), Q (−3;−1).

2) Самостоятельное решение задач.

Работают самостоятельно (по необходимости пользуются помощью учителя или соседа по парте). Двое учащихся работают на откидной доске. После окончания работы взаимопроверка .

26, 27 (из рабочей тетради) .

Работают самостоятельно в тетради. При необходимости учитель даёт консультации. Затем решения оформляются на доске.

972(б), 973, дополнительная задача.

Точки С(2;5) и D(5;2) лежат на прямой, значит их координаты удовлетворяют уравнению прямой ах+ву+с=0. Отсюда

Выразим коэффициенты и через и подставим их в уравнение ах+ву+с=0.

Значит, /: с, с ≠ 0, получаем

Так как СМ — медиана треугольника АВС , то М — середина отрезка АВ , т. е.

Напишем уравнение прямой, проходящей через точки и М(0;3). Подставим коэффициенты точек С и М в уравнение ах+ву+с=0.

Получим уравнение прямой СМ .

Параллелограмм ABCD задан координатами трёх своих вершин: A(- 1;1), B(1;7), D(7;-3). Напишите уравнение прямых ВС и DC . Вычислите площадь данного треугольника.

VI . Подведение итогов урока.

Подведем итоги урока.

С чем мы сегодня познакомились на уроке?

Назовите общий вид уравнения прямой.

Какое уравнение имеет прямая параллельная Ох, Оу ?

Выставление отметок за урок.

П. 92, №972(в), 974, 976, 977.

Выбранный для просмотра документ Уравнение прямой.pptx

Описание презентации по отдельным слайдам:

«Уравнение прямой» Геометрия 9 класс.

Устная работа 1. Напишите уравнение окружности с центром в точке С(3;0), с радиусом равным 2. (х – 3)2 + у 2 = 4 Принадлежит ли точка Е(3;7) линии, заданной уравнением х2 − 4х + у =4? Докажите, что АВ – хорда окружности (х – 4)2 + (у − 1)2 = 25, если А(0; −2), В(4;6). Да

Устная работа Найдите координаты центра окружности с диаметром CD, если С(4; −7), D(2; −3). (3;5) Функция задана уравнением . Какая линия служит графиком данной функции? Проходит ли прямая, заданная уравнением у = 3х + 2, через IV координатную плоскость? Нет, k >0 Прямая

Итак , уравнение прямой: где a, b и c – некоторые числа

Все точки прямой имеют одну и ту же ординату у0. Значит, координаты любой точки прямой l удовлетворяют уравнению: у = у0 Это значит, что уравнение задает на плоскости горизонтальную прямую. а)уравнение горизонтальных прямых М0 (х0; у0) l l║Oх М0 (х0; у0)ϵ l у0 у = у0

Примеры y = 4 y = -2 y = 0 у = 0 – уравнение оси Ох

б) уравнение вертикальных прямых n║Oу М0 (х0; у0)ϵ n l n М0 (х0; у0) у0 x0 Все точки прямой имеют одну и ту же абсциссу х0. Значит, координаты любой точки прямой n удовлетворяют уравнению: х = х0 Это значит, что уравнение задает на плоскости вертикальную прямую. х = х0

x = 3 x = -2 x = 0 Примеры х = 0 – уравнение оси Оу

Задача Напишите уравнение прямой, которая проходит через точки Р(2; 1), Q(−3;−1). Решение a ∙ 2+ b ∙ 1+ c = 0, a ∙ (−3)+ b ∙ (−1) + c = 0; 2a + b + c = 0, (1) −3а − b + c = 0; (2) Прямая имеет уравнение вида ax + by + c = 0. Подставляя координаты Р и Q в это уравнение, получим:

1) Выразим коэффициенты a и b через коэффициент c: (1) 2a + b + c = 0, b = −2а −с 2)Подставим найденное значение b в уравнение (2): −3а − b + c = 0; −3а − (−2а −с) + c = 0; −3а + 2а + с + c = 0; −а + 2с = 0; −а = − 2с; а = 2с; 3) Найдём b : b = −2∙ 2с −с b = − 5с 2)Подставим найденные значение а и b в уравнение прямой: 2с ∙ x − 5с ∙ y + c = 0 с(2 x − 5y + 1) = 0 / : с ≠ 0 2 x − 5y + 1 = 0 Получаем уравнение искомой прямой:

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 945 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 687 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 315 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 593 077 материалов в базе

Материал подходит для УМК

«Геометрия», Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др.

92. Уравнение прямой

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 19.11.2017
  • 2321
  • 14

  • 19.11.2017
  • 2758
  • 14

  • 18.11.2017
  • 673
  • 1

  • 18.11.2017
  • 788
  • 3
  • 18.11.2017
  • 987
  • 2

  • 18.11.2017
  • 389
  • 0

  • 18.11.2017
  • 2190
  • 40

  • 18.11.2017
  • 441
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 19.11.2017 11789
  • RAR 3.9 мбайт
  • 778 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Борисова Алла Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 5 лет и 5 месяцев
  • Подписчики: 6
  • Всего просмотров: 294018
  • Всего материалов: 111

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

Минпросвещения упростит процедуру подачи документов в детский сад

Время чтения: 1 минута

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

Университет им. Герцена и РАО создадут портрет современного школьника

Время чтения: 2 минуты

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Уравнение прямой 9 класс

Уравнение прямой 9 класс презентация к уроку

Просмотр содержимого документа
«Уравнение прямой 9 класс»

Теорема. Прямая на плоскости задается уравнением

где a , b , c — некоторые числа, причем a , b одновременно не равны нулю и составляют координаты вектора , перпендикулярного этой прямой и называемого вектором нормали .

В режиме слайдов ответы появляются после кликанья мышкой

Если число b в уравнении прямой не равно нулю , то, разделив на b , это уравнение можно привести к виду y = kx + l . Коэффициент k называется угловым коэффициентом этой прямой. Он равен тангенсу угла , который образует прямая с осью абсцисс .

В режиме слайдов ответы появляются после кликанья мышкой

Взаимное расположение прямых

Д ве прямы е , заданны е уравнениями a 1 x + b 1 y + c 1 = 0, a 2 x + b 2 y + c 2 = 0, параллельны, если векторы их нормалей одинаково или противоположно направлены, т.е. для их координат ( a 1 , b 1 ), ( a 2 , b 2 ) для некоторого числа t выполняются равенства a 2 = ta 1 , b 2 = tb 1 . При этом, если с 2 = t с 1 , то уравнения определяют одну и ту же прямую. Если же с 2 tc 1 , то эти уравнения определяют параллельные прямые.

Е сли две прямые пересекаются, то угол между ними равен углу между их нормалями ( a 1 , b 1 ), ( a 2 , b 2 ). Этот угол можно вычислить через формулу скалярного произведения

В режиме слайдов ответы появляются после кликанья мышкой

Найдите угол между прямыми, заданными уравнениями : x + 2 y – 1 = 0, 2 xy + 3 = 0.

Решение: Векторы нормалей к данным прямым имеют координаты (1, 2) и (2, -1) соответственно. Их скалярное произведение равно нулю и, следовательно, эти векторы перпендикулярны. Значит, угол между данными прямыми равен 90 о .

В режиме слайдов ответы появляются после кликанья мышкой

Найдите уравнение прямой, проходящей через заданные точки A 1 ( x 1 , y 1 ) и A 2 ( x 2 , y 2 ).

Решение: Найдем вектор нормали к данной прямой. Он перпендикулярен вектору ( x 2 – x 1 , y 2 – y 1 ). Следовательно, в качестве такого вектора можно взять вектор с координатами ( y 2 – y 1 , x 1 – x 2 ). Искомым уравнением прямой будет уравнение

которое можно также переписать в виде

В режиме слайдов ответы появляются после кликанья мышкой

Какие уравнения имеют координатные прямые: а) Ox ; б) Oy ?

В режиме слайдов ответы появляются после кликанья мышкой

Изобразите прямую , заданную уравнением y = 2 x .

В режиме слайдов ответы появляются после кликанья мышкой

Изобразите прямую , заданную уравнением x — 2 y + 2 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, изображенной на рисунке.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, изображенной на рисунке.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через начало координат с угловым коэффициентом: а) k = 1; б) k = 2; в) k = 0,5 ; г) k = -1; д) k = -2; е) k = — 0,5 . Нарисуйте эти прямые.

В режиме слайдов ответы появляются после кликанья мышкой

Найдите угловой коэффициент прямой: а) 2 x — 3 y + 4 = 0; б) x + 2 y — 1 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через точки A (1, 0), B (0, 1).

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через точку A 0 (1, 2) с вектором нормали (-1, 1).

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, проходящей через точки M (3, -1), N (4, 1). Найдите координаты вектора нормали этой прямой.

Ответ: 2 xy — 7 = 0; (2, -1).

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, которая проходит через точку M (1, -2) и параллельна: а) координатной прямой Ox ; б) координатной прямой Oy ; в) прямой y = x .

В режиме слайдов ответы появляются после кликанья мышкой

Точка H (-2, 4) является основанием перпендикуляра, опущенного из начала координат на прямую. Напишите уравнение этой прямой.

Ответ: x — 2 y + 10 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Определите, какие из перечисленных ниже пар прямых параллельны между собой:

г) 2 x + 4 y — 8 = 0, — x — 2 y + 4 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Найдите угол между прямыми, заданными уравнениями x + y + 1 = 0, xy — 1 = 0. Изобрази те эти прямые.

В режиме слайдов ответы появляются после кликанья мышкой

Найдите координаты точки пересечения прямых:

б) 3 xy + 2 = 0, 5 x — 2 y + 1 = 0.

В режиме слайдов ответы появляются после кликанья мышкой

Напишите уравнение прямой, симметричной прямой, заданной уравнением ax + by + с = 0, относительно: а) оси Ox ; б) оси Oy ; в) начала координат O .

В режиме слайдов ответы появляются после кликанья мышкой

Ответ: а ) ax – by + с = 0 ;

Треугольник задан своими вершинами A (1, 3), B (3, 0), C (4, 2). Найдите уравнения высот этого треугольника и координаты их точки пересечения.

В режиме слайдов ответы появляются после кликанья мышкой


источники:

http://infourok.ru/razrabotka-uroka-po-geometrii-uravnenie-pryamoy-klass-2301260.html

http://multiurok.ru/files/uravnenie-priamoi-9-klass.html