Вывод уравнения сферы уравнения плоскости

Лекция № 10

Ссылки

Глава IV. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

§12. УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ

12.1. Основные понятия

Поверхность и ее уравнение

Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О1 есть геометрическое место всех точек пространства, находящихся от точки O1 на расстоянии R.

Прямоугольная система координат Oxyz в пространстве позволяет установить взаимно однозначное соответствие между точками простран­ства и тройками чисел х, у и z — их координатами. Свойство, общее всем точкам поверхности, можно записать в виде уравнения, связывающего ко­ординаты всех точек поверхности.

Уравнением данной поверхности в прямоугольной системе координат Oxyz называется такое уравнение F(x, у, z) = 0 с тремя переменны­ми х, у и z, которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на этой поверхности. Переменные х, у и z в уравнении поверхности называ­ются текущими координатами точек поверхности.

Уравнение поверхности позволяет изучение геометрических свойств поверхности заменить исследованием его уравнения. Так, для того, чтобы узнать, лежит ли точка M1(x1;y1;z1) на данной поверхности, достаточно подстав и ть координаты точки M1 в уравнение поверхности вместо пере­менных: если эти координаты удовлетворяют уравнению, то точка лежит на поверхности, если не удовлетворяют — не лежит.

Найдем уравнение сферы радиуса R с центром в точке O1(x0;y0;z0). Согласно определению сферы расстояние любой ее точки М(х; у; z) от центра O1(x0;y0;z0) равно радиусу R, т. е. O1M= R. Но , где . Следовательно,

Это и есть искомое уравнение сферы. Ему удовлетворяют координаты лю­бой ее точки и не удовлетворяют координаты точек, не лежащих на данной сфере.

Если центр сферы Ο1 совпадает с началом координат, то уравнение сферы принимает вид .

Если же дано уравнение вида F(x;y;z) = 0 , то оно, вообще говоря, определяет в пространстве некоторую поверхность.

Выражение «вообще говоря» означает, что в отдельных случаях уравнение F(x; y; z)=0 может определять не поверхность, а точку, линию или вовсе не определять никакой геометрический образ. Говорят, «поверхность вырождается».

Так, уравнению не удовлетворяют никакие дей­ствительные значения х, у, z. Уравнению удовлетворяют лишь координаты точек, лежащих на оси Ох (из уравнения следует: у = 0, z = 0, а х — любое число).

Итак, поверхность в пространстве можно задать геометрически и ана­литически. Отсюда вытекает постановка двух основных задач:

1. Дана поверхность как геометрическое место точек. Найти уравнение этой поверхности.

2. Дано уравнение F(x;y;z) = 0. Исследовать форму поверхности, определяемой этим уравнением.

Уравнения линии в пространстве

Линию в пространстве можно рассматривать как линию пересечения двух поверхностей (см. рис. 66) или как геометрическое место точек, об­щих двум поверхностям.

Если и — уравнения двух поверхностей, определяющих линию L, то координаты точек этой линии удовлетворяют системе двух уравнений с тремя неизвестными:

(12.1)

Сравнения системы (12.1) называются уравнениями линии в пространстве. Например, есть уравнения оси Ох.

Линию в пространстве можно рассматривать как траекторию движения точки (см. рис. 67). В этом случае ее задают векторным уравнением

(12.2)

или параметрическими уравнениями

проекций вектора (12.2) на оси координат.

Например, параметрические уравнения винтовой линии имеют вид

Если точка Μ равномерно движется по образующей кругового цилиндра, а сам цилиндр равномерно вращается вокруг оси, то точка Μ описывает винтовую линию (см. рис. 68).

12.2. Уравнения плоскости в пространстве

Простейшей поверхностью является плоскость. Плоскость в пространстве Oxyz можно задать разными способами. Каждому из них соответствует определенный вид ее уравнения.

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть в пространстве Oxyz плоскость Q задана точкой и вектором , перпендикулярным этой плоскости (см. рис. 69). Выведем уравнение плоскости Q. Возьмем на ней произвольную точку и составим вектор . При любом расположении точки Μ на плоскости Q векторы и взаимно перпендикулярны, поэтому их скалярное произведение равно нулю: , т. е.

(12.3)

Координаты любой точки плоскости Q удовлетворяют уравнению (12.3), координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (для них ).

Уравнение (12.3) называется уравнением плоскости, проходящей через данную точку перпендикулярно вектору . Оно первой степени относительно текущих координат x, y, z. Вектор называется нормальным вектором плоскости.

Придавая коэффициентам А, В и С уравнения (12.3) различные значения, можно получить уравнение любой плоскости, проходящей череp точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей, а уравнение (12.3) — уравнением связки плоскостей.

Общее уравнение плоскости

Рассмотрим общее уравнение первой степени с тремя переменными х, у и z:

(12.4)

Полагая, что по крайней мере один из коэффициентов А, В или С не равен нулю, например , перепишем уравнение (12.4) в виде

(12.5)

Сравнивая уравнение (12.5) с уравнением (12.3), видим, что уравнения (12.4) и (12.5) являются уравнением плоскости с нормальным вектором , проходящей через точку .

Итак, уравнение (12.4) определяет в системе координат Oxyz некоторую плоскость. Уравнение (12.4) называется общим уравнением плоскости.

Частные случаи общего уравнения плоскости:

1. Если D = 0, то оно принимает вид . Этому уравнению удовлетворяет точка . Следовательно, в этом случае плос­кость проходит через начало координат.

2. Если С = 0, то имеем уравнение . Нормальный вектор перпендикулярен оси Οz. Следовательно, плоскость параллельна оси Οz; если B = 0 — параллельна оси Оу, А = 0 — параллельна оси Ох.

3. Если С = D = 0, то плоскость проходит через параллельно оси Οz, т. е. плоскость проходит через ось Οz. Аналогично, уравнениям и отвечают плоскости, проходящие соответственно через оси Ох и Оу.

4. Если А = В = 0, то уравнение (12.4) принимает вид , т. е. Плоскость параллельна плоскости Оху. Аналогично, уравнениям и отвечают плоскости, соответственно параллельные плоскостям Oyz и Οxz.

5. Если A = B = D = 0, то уравнение (12.4) примет вид , т. е. z = 0. Это уравнение плоскости Оху. Аналогично: у = 0 — уравнение плоскости Οxz; x = О — уравнение плоскости Oyz.

Уравнение плоскости, проходящей через три данные точки

Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Найдем уравнение плоскости Q, проходящей через три данные точки M1(x1;y1;z1), М2(x2;y2;z2) и М33,y3,z3), не лежащие на одной прямой.

Возьмем на плоскости произвольную точку M(x;y;z) и составим век­торы , , . Эти векторы лежат на плоскости Q, следовательно, они компланарны. Используем условие компланарнос­ти трех векторов (их смешанное произведение равно нулю), получаем , т. е.

(12.6)

Уравнение (12.6) есть уравнение плоскости, проходящей через три данные точки.

Уравнение плоскости в отрезках

Пусть плоскость отсекает на осях Ох, Оу и Оz соответственно отрезки a, b и c, т. е. проходит через три точки A(a;0;0), B(0;b;0) и C(0;0;c) (см.рис. 70). Подставляя координаты этих точек в уравнение (12.6), получаем

Раскрыв определитель, имеем , т. е. или

(12.7)

Уравнение (12.7) называется уравнением плоскости в отрезках на осях. Им удобно пользоваться при построении плоскости.

Нормальное уравнение плоскости

Положение плоскости Q вполне определяется заданием единичного вектора , имеющего направление перпендикуляра ОК, опущенного на

плоскость из начала координат, и длиной p этого перпендикуляра (см. рис. 71).

Пусть ОК = p, а α, β, g — углы, образованные единичным вектором ё с осями Ох, Оу и Οz. Тогда . Возьмем на плоскости произвольную точку М(х; у; z) и соединим ее с началом координат. Образуем вектор . При любом положении точки Μ на плоскости Q проекция радиус-вектора на направление вектора всегда равно р: , т. е. или

(12.8)

Уравнение (12.8) называется нормальным уравнением плоскости в векторной форме. Зная координаты векторов f и e , уравнение (12.8) перепишем в виде

(12.9)

Уравнение (12.9) называется нормальным уравнением плоскости в координатной форме.

Отметим, что общее уравнение плоскости (12.4) можно привести к нормальному уравнению (12.9) так, как это делалось для уравнения прямой на плоскости. А именно: умножить обе части уравнения (12.4) на норми­рующий множитель , где знак берется противоположным знаку свободного члена D общего уравнения плоскости.

12.3. Плоскость. Основные задачи

Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей

Пусть заданы две плоскости Q1 и Q2:

Под углом между плоскостями Q1 и Q2 понимается один из двугран­ных углов, образованных этими плоскостями.

Угол j между нормальными векторами и плоскостей Q1 и Q2 равен одному из этих углов (см. рис. 72).

Для нахождения острого угла следует взять модуль правой части.

Если плоскости Q1 и Q2 перпендикулярны (см. рис. 73, а), то таковы же их нормали, т. е. (и наоборот). Но тогда , т. е. . Полученное равенство есть условие перпендикулярности двух плоскостей Q1 и Q2.

Если плоскости Q1 и Q2 параллельны (см. рис. 73, б), то будут параллельны и их нормали и (и наоборот). Но тогда, как известно координаты векторов пропорциональны: . Это и есть уcловиє параллельности двух плоскостей Q1 и Q2.

Расстояние от точки до плоскости

Пусть задана точка и плоскость Q своим уравнением . Расстояние d от точки до плоскости Q находится по формуле

Вывод этой формулы такой же, как вывод формулы расстояния от точки до прямой .

Расстояние d от точки M0 до плоскости Q равно модулю проекции вектора , где — произвольная точка плоскости Q, на направление нормального вектора (см. рис. 74). Следовательно,

А так как точка принадлежит плоскости Q, то

Поэтому . Отметим, что если плоскость Q задана уравнением , то расстояние от точки до плоскости Q может быть найдено по формуле

Уравнение прямой, плоскости и сферы

306 гр. Математика. Дистанционное обучение. Тема 1-3.

Просмотр содержимого документа
«Уравнение прямой, плоскости и сферы»

Тема 1: Уравнение прямой в пространстве.

З адание: записать конспект и выполнить самостоятельную работу.

Пример 1. Составить уравнение прямой, проходящей через две точки:

Подставив в уравнение прямой соответствующие координаты, получим:

Упростим:

Ответ:

Пример 2. Составить уравнение прямой, проходящей через две точки:

Подставив в уравнение прямой соответствующие координаты, получим:

Упростим:

Ответ: Самостоятельная работа

Пример 1. Составить уравнение прямой, проходящей через две точки:

Пример 2. Составить уравнение прямой, проходящей через две точки:

Пример 3. Составить уравнение прямой, проходящей через две точки:

Тема 2: Уравнение плоскости в пространстве

Задание: записать конспект и выполнить самостоятельную работу

П ример 1: Принадлежит, ли точка В (-1; 2; 7) плоскости, заданной уравнением 2х+3у-z+3=0

Решение: Подставим координаты точки в уравнение и проверим верно ли равенство.

Ответ: точка В (-1; 2; 7) принадлежит плоскости.

Пример 2: Принадлежит, ли точка Е(0; 4; -6) плоскости, заданной уравнением х-5у-4z+2=0

Решение: Подставим координаты точки в уравнение и проверим верно ли равенство. х-5у-4z+2=0

0-5·4-4·(-6)+2=0-20+24+2=6≠0 не верно

Ответ: точка Е(0; 4; -6) не принадлежит плоскости.

Пример 3: При каком D точка А(1; 5;-2) принадлежит плоскости -3х+2у-z+D=0

Решение: Подставим координаты точки в уравнение и найдем D.

Пример 1: Принадлежит, ли точка В (-2; 3; 8) плоскости, заданной уравнением

Пример 2: Принадлежит, ли точка Е(3; 4; -2) плоскости, заданной уравнением

Пример 3: При каком D точка А(2; 4;-1) принадлежит плоскости -2х+5у-z+D=0

Решить задания №1, №2

О пределение. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии R от данной точки О.

R – радиус сферы, т. О – центр сферы.

Написать уравнение сферы с центром в точке О(1; 2; -5) и радиусом R=3.

Подставим в уравнение сферы: (х-1) 2 +(у-2) 2 +(z-(-5)) 2 =3 2 .

Упростим: (х-1) 2 +(у-2) 2 +(z+5) 2 =9.

Ответ: (х-1) 2 +(у-2) 2 +(z+5) 2 =9.

Пример 2. Дано уравнение сферы: (х-6) 2 +(у+3) 2 +(z-4) 2 =64. Найти координаты центра и радиус сферы.

1)найдем координаты центра: (х-6) 2 +(у-(-3)) 2 +(z-4) 2 =64

2)найдем радиус: R 2 =64, R=√64=8,

Ответ: О(6, -3, 4), R = 8.

Задание 1. Написать уравнение сферы с центром в точке О(5; -2; 3) и радиусом R= 6

Задание 2. Дано уравнение сферы (х-3) 2 +(у+7) 2 +(z-8) 2 =25. Найти координаты центра и радиус сферы.

Уравнения сферы, плоскости и прямой
презентация к уроку по геометрии (10, 11 класс)

Уравнения сферы, плоскости и прямой

Скачать:

ВложениеРазмер
uravneniya_sfery_ploskosti_i_pryamoy.ppt1.87 МБ

Предварительный просмотр:

Подписи к слайдам:

Понятие сферы и её элементов Уравнение сферы в заданной системе координат СФЕРА УРАВНЕНИЕ СФЕРЫ

Тело вращения — сфера

Определение сферы Элементы сферы Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. т.О — центр сферы ОА – радиус сферы. Любой отрезок, соединяющий центр и какую-нибудь точку сферы называется радиусом сферы. ВС – диаметр сферы. Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы d=2r

? Какие из тел, изображенных на рисунках, являются сферой? 1 2 3 4 5 6

На плоскости В пространстве L М(х;у) х у L Сформулируйте определение линии L на плоскости Уравнение с двумя переменными х и у называется уравнением линии L , если этому уравнению удовлетворяют координаты любой точки линии L и не удовлетворяют координаты никакой точки, не лежащей на этой линии Уравнение с тремя переменными х,у, z называется уравнением поверхности, если этому уравнению удовлетворяют координаты любой точки поверхности и не удовлетворяют координаты никакой точки, не лежащей на этой поверхности Х z Сформулируйте определение уравнения поверхности в пространстве Х у М(х;у; z ) •

На плоскости В пространстве М(х;у) х у х у z (х;у; z ) С

Частные случаи 1.Уравнение окружности с центром в т.О(0;0) и радиусом r 1.Уравнение сферы с центром в т.О(0;0;0) и радиусом R

Выбрать из предложенных уравнений – уравнение сферы: 1. 2. 3. 4. 5. 6. 7. 8. 1.Ур-е окружности 2.Ур-е сферы 3.Ур-е прямой 4.Ур-е сферы 5.Ур-е параболы 6.Ур-е сферы 7.Ур-е сферы 8. ?

В данных уравнениях определите координаты центра сферы и радиус 1. 2. 3. 4.

Составьте уравнение сферы по следующим данным центра и радиуса сферы: Дано: С(-2;8;1); R =11 Дано: А(3;-2;0); R =0,7 Дано: О(0;0;0); R =1 Проверяем ответы:

Задача Определить принадлежит ли т.А сфере, заданной уравнением если: а) т.А(5;-2;6) б) т.А(-5;2;6) Решение: Равенство верное , следовательно А(5;-2;6) принадлежит сфере Равенство неверное , следовательно А(5;-2;6) не принадлежит сфере

Уравнение плоскости и прямой

совпадают, если существует такое число k , что параллельны, если существует такое число k , что В остальных случаях плоскости пересекаются.

Если известна какая-нибудь точка плоскости M 0 и какой-нибудь вектор нормали к ней , то через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору. Общее уравнение плоскости будет иметь вид: n (A;B;C) M 0

Чтобы получить уравнение плоскости , имеющее приведённый вид, возьмём на плоскости произвольную точку M( x ; y ; z ) . Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис), а для этого, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. Вектор задан по условию. Координаты вектора найдём по формуле : Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:

Используем формулу A ( x — x 0 )+B(y-y 0 )+C(z-z 0 )=0

Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического задания прямой в пространстве является задание с помощью системы из двух уравнений задающих пару пересекающихся плоскостей.

Уравнение прямой в пространстве Прямую, проходящую через точку A 0 ( x 0 , y 0 , z 0 ) с направляющим вектором ( a , b , c ) можно задавать параметрическими уравнениями В случае, если прямая в пространстве задается двумя точками A 1 ( x 1 , y 1 , z 1 ), A 2 ( x 2 , y 2 , z 2 ), то, выбирая в качестве направляющего векто­ра вектор ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) и в качестве точки А 0 точку А 1 , получим следующие уравнения

Упражнение 1 Какими уравнениями задаются координатные прямые? Ответ: Ось Ox Ось O y Ось O z

Упражнение 2 Напишите параметрические уравнения прямой, проходящей через точку А (1,-2,3) с направляющим вектором, имеющим координаты (2,3,-1). Ответ:

Упражнение 3 Напишите параметрические уравнения прямой, проходящей через точки А 1 (-2,1,-3), А 2 (5,4,6). Ответ:

Упражнение 4 Напишите параметрические уравнения прямой, проходящей через точку M (1,2,-3) и перпендикулярную плоскости x + y + z + 1 = 0. Ответ:

Упражнение 5 В каком случае параметрические уравнения определяют перпендикулярные прямые? Ответ: Если выполняется равенство a 1 a 2 +b 1 b 2 +c 1 c 2 = 0 .

По теме: методические разработки, презентации и конспекты

Практическая работа «Построение углов между плоскостями, между прямой и плоскостью»

Практическая работа по геометрии ,10 класс. Хотя данную работу можно провести при подготовке к ЕГЭ по математике, при решении задач типа С2. Работа содержит 8 заданий на построение угла между прямой и.

Тест по теме «Параллельность прямых и плоскостей. Перпендикулярность прямых в пространстве» (геометрия 10 класс)

Данный тест можно предложить учащимся как входной перед изучением темы «Многогранники».

Параллельность прямых и плоскостей. Параллельные прямые в пространстве

Урок-презентация по геометрии 10 класс.

Тесты по теме «Прямые в пространстве. Параллельность прямых, прямой и плоскости», «Перпендикулярность прямых, прямой и плоскости»

Тесты предназначены для проверки усвоенияследующих понятий и определений: взаимное расположение прямых в пространстве, определение скрещивающихся прямых, определение параллельных прямых, признак парал.

Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространстве

Материал для практической работы «Расстояние от точки до плоскости, от прямой до плоскости, расстояние между плоскостями, между скрещивающимися прямыми, между произвольными фигурами в пространств.

Расстояние от точки до плоскости, от прямой до плоскости

Материал для практической работы «Расстояние от точки до плоскости, от прямой до плоскости&quot.

Составление уравнений сферы, плоскости, прямой.

Составление уравнений сферы, плоскости, прямой.


источники:

http://multiurok.ru/files/uravnenie-priamoi-ploskosti-i-sfery.html

http://nsportal.ru/shkola/geometriya/library/2020/11/15/uravneniya-sfery-ploskosti-i-pryamoy