Выводы по решению систем линейных уравнений

Исследование СЛАУ. Общие сведения

В данной статье мы расскажем о методах, видах, условиях и определениях исследований решений систем линейных уравнений, что такое метод Кронекера-Капели, а также приведем примеры.

Общие сведения (определения, условия, методы, виды)

Системы линейных алгебраических уравнений с n неизвестными могут иметь:

  • единственное решение;
  • бесконечное множество решение (неопределенные СЛАУ);
  • ни одного решения (несовместные СЛАУ).

Пример 1

Система x + y + z = 1 2 x + 2 y + 2 z = 3 не имеет решений, поэтому она несовместна.

Система x + y = 1 2 x + 7 y = — 3 имеет единственное решение x = 2 ; y = 1 .

Система x + y = 1 2 x + 2 y = 2 3 x + 3 y = 3 имеет бесконечное множество решений x = t y = 1 — t при — ∞ t ∞ .

Перед решением системы уравнений необходимо исследовать систему, т.е. ответить на следующие вопросы:

  • Совместна ли система?
  • Если система совместна, то, какое количество решений она имеет — одно или несколько?
  • Как найти все решения?

Если система малоразмерна при m = n , то ответить на поставленные вопросы можно при помощи метода Крамера:

  • если основной определитель системы, то система совместна и имеет единственное решение, которое вычисляется методом Крамера;
  • если, и один из вспомогательных определителей, то система не является совместной, т.е. не имеет решений;
  • если и все, и один из коэффициентов СЛАУ, то система не является определенной и имеет бесконечное множество решений.

Ранг матрицы и его свойства

Бывают случаи, которые выбиваются из представленных вариантов решения СЛАУ, например, линейные уравнения с большим количеством уравнений и неизвестных.

Для такого варианта решения существует ранг матрицы, который представляет собой алгоритм действий в случае решения системы матрицы, когда

В математике выделяют следующие подходы к определению ранга матрицы:

  • при помощи понятия линейной зависимости/независимости строк/столбцов матрицы. Ранг равен максимальному количеству независимых строк (столбцов) матрицы
  • при помощи понятия минора матрицы в качестве наивысшего порядка минора, который отличается от нуля. Минор матрицы порядка k — определитель k-го порядка, составленный из элементов, которые стоят на пересечении вычеркиваемых k-строк и k-столбцов матрицы;
  • при помощи метода Гаусса. По завершении прямого хода ранг матрицы равняется количеству ненулевых строк.

Обозначение ранга матрицы: r ( A ) , r g ( A ) , r A .

Свойства ранга матрицы:

  1. квадратная невырожденная матрица обладает рангом, который отличается от нуля;
  2. если транспонировать матрицу, то ранг матрицы не изменяется;
  3. если поменять местами 2 параллельные строки или 2 параллельных столбца, ранг матрицы не изменяется;
  4. при удалении нулевого столбца или строки ранг матрицы не изменяется;
  5. ранг матрицы не изменяется, если удалить строку или столбец, которые являются линейной комбинацией других строк;
  6. при умножении все элементов строки/столбца на число k н е р а в н о н у л ю ранг матрицы не изменяется;
  7. ранг матрицы не больше меньшего из ее размеров: r ( А ) ≤ m i n ( m ; n ) ;
  8. когда все элементы матрицы равны нулю, то только тогда r ( A ) = 0 .

Пример 2

А 1 = 1 1 1 2 2 2 3 3 3 , B 1 = 1 0 0 0 0 0

r ( A 1 ) = 1 , r ( B 1 ) = 1

А 2 = 1 2 3 4 0 5 6 7 0 0 0 0 ; В 2 = 1 1 3 1 2 1 4 3 1 2 5 0 5 4 13 6

Выводы по решению систем линейных уравнений

    Главная
  • Список секций
  • Математика
  • РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Автор работы награжден дипломом победителя I степени

Миллионы людей занимаются математическими расчетами, иногда в силу влечения к таинствам математики и ее внутренней красоте, а чаще в силу профессиональной или иной необходимости, не говоря уже об учебе.

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных алгебраических уравнений. Значение систем определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г. Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n) строить так называемые определители, при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы стали предметом самостоятельного изучения, так как обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Современная алгебра, понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Для современной алгебры характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми проводятся данные операции. Классическим разделом алгебры является линейная алгебра, т.е. теория векторных пространств и модулей, частью которых являются сформировавшиеся ещё в XIX веке теория линейных уравнений и теория матриц. Идеи и методы линейной алгебры применяются во многих разделах математики. Так, основным предметом изучения функционального анализа являются бесконечномерные векторные пространства.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. На уроках алгебры мы использовали такие способы, как сложение, подстановка и графический.

Я решил узнать, какие еще существуют методы нахождения решений систем линейных алгебраических уравнений.

Целью работы является изучение различных способов решения систем линейных алгебраических уравнений для применения их на практике.

Актуальность заключается в том, что системы линейных алгебраических уравнений – это математический аппарат, который имеет широкое применение в решении многих задач практического приложения математики.

Задачи:

Изучить литературу по методам решения систем линейных алгебраических уравнений.

Рассмотреть способы решения систем линейных алгебраических уравнений различными методами.

Показать применение систем линейных алгебраических уравнений на практике.

Разработать компьютерную программу, которая на основе введённых числовых коэффициентов находит решение системы линейных уравнений.

Сделать вывод о проделанной работе.

II Основная часть2.1 Определение системы линейных алгебраических уравнений. Классификация систем

Под системой линейных алгебраических уравнений(СЛАУ) подразумевают систему

x1, х2,…. хn- неизвестные переменные, аij, i = 1,2. p, j = 1,2,…,n — коэффициенты, b1,b2. bp – свободные члены. [2]

Такую форму записи СЛАУ называют координатной.

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных x1 = a1, x2 = a2,…, xn = an, обращающий все уравнения системы в тождества.

Если система уравнений имеет хотя бы одно решение, то она называется совместной.

Если система уравнений решений не имеет, то она называется несовместной.

Если СЛАУ имеет единственное решение, то ее называют определенной; если решений больше одного, то – неопределенной.

Если свободные члены всех уравнений системы равны нулю b1 = b2 = … = bn = 0, то система называется однородной, в противном случае – неоднородной.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными. Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, затем брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса.

2.2 Матрицы и действия над ними. Алгебра матриц

Матрица размерами m × n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А)

Числа, из которых состоит матрица, называются элементами матрицы. Они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент. В общем виде матрицы записываются в следующем виде:

Матрица A , имеющая i строк и j столбцов, называется матрицей размера i на j и обозначается Aixj.

Элемент aij матрицы A = ij> стоит на пересечении i — ой строки и j — го столбца.

Если i = j, то матрица называется квадратной, а число строк (или столбцов) – её порядком.

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = ij> и В = ij> одинакового типа называются равными, если aij = bij при всех i и j. [3]

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой (матрицей-столбцом), а матрица, у которой все элементы аij = 0, – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ, а элементы квадратной матрицы порядка n,сумма индексов каждого из которых равна n+1, – побочную диагональ.

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е):

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной:

Диагональная матрица является частным случаем треугольной.

Транспонированием матрицы A=ij> называется операция, результатом которой является матрица A T = ji>.

Таким образом, если

Две матрицы А и В называются матрицами одного порядка, если они имеют одинаковое количество строк и одинаковое количество столбцов.

Матрицы А и В называются равными, если они одного порядка m´n, и aij= bij,

где i = 1, 2, 3, …, m, а j = 1, 2, 3, …, n.

Умножение матрицы на число.

Умножение матрицы А на число λ приводит к умножению каждого элемента матрицы на число λ:

Из данного определения следует, что общий множитель всех элементов матрицы можно выносить за знак матрицы.

Свойства умножения матрицы на число:

2) (λμ)А = λ(μА) = μ(λА), где λ,μ R;

Сумма (разность) матриц.

Сумма (разность) определяется лишь для матриц одного порядка m´n.

Суммой (разностью) двух матриц А и В порядка m´n называется матрица С того же порядка, где cij = aij± bij(i = 1,2,3…m; j = 1,2,3…n).

Иными словами, матрица С состоит из элементов, равных сумме (разности) соответствующих элементов матриц А и В.

Из данных выше определений следуют свойства суммы матриц:

1) коммутативность А+В=В+А;

2) ассоциативность (А+В)+С=А+(В+С);

3) дистрибутивность к умножению на число λR: λ(А+В) = λА+λВ;

4) 0+А=А, где 0 – нулевая матрица;

5) А+(–А)=0, где (–А) – матрица, противоположная матрице А;

Операция произведения определяется не для всех матриц, а лишь для согласованных.

Произведением двух согласованных матриц Amxn, а Bnxm, где

называется матрица С порядка m´k: Сmnx= Amnx ∙ Bmnx, элементы которой вычисляются по формуле:

то есть элемент cij i –ой строки и j –го столбца матрицы С равен сумме произведений всех элементов i –ой строки матрицы А на соответствующие элементы j –го столбца матрицы В.

Рассмотрим свойства произведения матриц:

1) не коммутативность: АВ ≠ ВА, даже если А и В, и В и А согласованы. Если же АВ = ВА, то матрицы А и В называются коммутирующими (матрицы А и В в этом случае обязательно будут квадратными).

2) для любых квадратных матриц единичная матрица Е является коммутирующей к любой матрице А того же порядка, причем в результате получим ту же матрицу А, то есть АЕ = ЕА = А.

4) произведение двух матриц может равняться нулю, при этом матрицы А и В могут быть ненулевыми.

5) ассоциативность АВС=А(ВС)=(АВ)С:

6) дистрибутивность относительно сложения:

(А+В)∙С = АС + ВС, А∙(В + С)=АВ + АС.

8) λ(АּВ) = (λА)ּ В = Аּ (λВ), λR.

2.3 Определители квадратной матрицы и их свойства

Пусть А – квадратная матрица порядка n:

Каждой такой матрице можно поставить в соответствие единственное действительное число, называемое определителем (детерминантом) матрицы и обозначаемое

Отметим, что определитель существует только для квадратных матриц.

Рассмотрим правила вычисления определителей и их свойства для квадратных матриц второго и третьего порядка, которые будем называть для краткости определителями второго и третьего порядка соответственно.

Определителем второго порядкаматрицы А2х2 называется число, определяемое по правилу:

т. е. определитель второго порядка есть число, равное произведению элементов главной диагонали минус произведение элементов побочной диагонали.

Из определения определителя второго порядка следуют его свойства:

1. Определитель не изменится при замене всех его строк соответствующими столбцами:

2. Знак определителя меняется на противоположный при перестановке строк (столбцов) определителя:

3. Общий множитель всех элементов строки (столбца) определителя можно вынести за знак определителя:

4. Если все элементы некоторой строки (столбца) определителя равны нулю, то определитель равен нулю.

5. Определитель равен нулю, если соответствующие элементы его строк (столбцов) пропорциональны:

6. Если элементы одной строки (столбца) определителя равны сумме двух слагаемых, то такой определитель равен сумме двух определителей:

7. Значение определителя не изменится, если к элементам его строки (столбца) прибавить (вычесть) соответственные элементы другой строки (столбца), умноженные на одно и тоже число :

так как по свойству 5.

Остальные свойства определителей рассмотрим ниже.

Введем понятие определителя третьего порядка: определителем третьего порядкаквадратной матрицы называется число

т. е. каждое слагаемое в формуле представляет собой произведение элементов определителя, взятых по одному и только одному из каждой строки и каждого столбца. Чтобы запомнить, какие произведения брать со знаком плюс, а какие со знаком минус, полезно знать правило треугольников и правило Саррюса.

Схематически правило треугольника можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся cо знаком «минус».

Правило Саррюса: справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»: [7]

Примеры расчета определителя с помощью правила Сюрраса и методом треугольников разобраны в Приложении 1.

Следует отметить, что свойства определителя второго порядка, рассмотренные выше, без изменений переносятся на случай определителей любого порядка, в том числе и третьего.

Рассмотрим еще два очень важных свойства определителей.

Введем понятия минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из исходного определителя вычеркиванием той строки и того столбца, которым принадлежит данный элемент.[5] Обозначают минор элемента αij через Mij.

Пример. Тогда, например

Алгебраическим дополнением элемента αijопределителя |A| называется его минор Mij, взятый со знаком (-1) i+j . Алгебраическое дополнение будем обозначать Aij, то есть

Таким образом, мы получаем восьмое свойство определителя:

Теорема Лапласа. Определитель равен сумме всех произведений элементов какой-либо строки (столбца) на соответствующие алгебраические дополнения элементов этой строки (столбца).

Заметим, что данное свойство определителя есть не что иное, как определение определителя любого порядка. На практике его используют для вычисления определителя любого порядка. Как правило, прежде чем вычислять определитель, используя свойства 1 – 7, добиваются того, если это возможно, чтобы в какой-либо строке (столбце) были равны нулю все элементы, кроме одного, а затем раскладывают по элементам строки (столбца).

Девятое свойство определителя носит название теорема аннулирования:

сумма всех произведений элементов одной строки (столбца) определителя на соответствующие алгебраические дополнения элементов другой строки (столбца) равна нулю, то есть

Примеры вычислений определителя с помощью теоремы Лапласа и теоремы аннулирования представлены в Приложении 2 и Приложении 3 соответственно.

2.4 Обратная матрица

В теории чисел наряду с числом α определяют число, противоположное ему (-α) такое, что α +(- α ) = 0, и число, обратное ему , что .

Аналогично, в теории матриц мы уже ввели понятие противоположной матрицы, ее обозначение (– А).

Обратной матрицейдля квадратной матрицы А порядка n называется матрица , если выполняются равенства

Где Е – единичная матрица порядка n.

Обратная матрица существует только для квадратных невырожденных матриц.

Квадратная матрица называется невырожденной(неособенной), если det A ≠ 0. Если же det A = 0, то матрица А называется вырожденной(особенной).

Невырожденная матрица А имеет единственную обратную матрицу А -1 .

Найдем определитель обратной матрицы. Так как определитель произведения двух матриц А и В одинакового порядка равен произведению определителей этих матриц, т. е. , следовательно, произведение двух невырожденных матриц АВ есть невырожденная матрица.[4]

Определитель обратной матрицы есть число, обратное определителю исходной матрицы.

Отметим ряд особых свойств обратной матрицы:

1) для данной матрицы А ее обратная матрица А -1 является единственной;

2) если существует обратная матрица А -1 , то правая обратная и левая обратная матрицы совпадают с ней;

3) особенная (вырожденная) квадратная матрица не имеет обратной матрицы.

Основные свойства обратной матрицы:

1) определитель обратной матрицы и определитель исходной матрицы являются обратными величинами;

2) обратная матрица произведения квадратных матриц равна произведению обратных матриц сомножителей, взятому в обратном порядке:

3) транспонированная обратная матрица равна обратной матрице от данной транспонированной матрицы:

2.5 Матричный метод решения систем линейных уравнений

Пусть дана система n линейных уравнений с n неизвестными: , где

Будем предполагать, что основная матрица A невырожденная. Тогда существует обратная матрица A -1 . Помножив матричное уравнение на матрицу A -1 , получим формулу, на которой основан матричный метод решения систем линейных уравнений:

Пример.Решить систему линейных уравнений матричным методом.

Задана система трёх линейных уравнений с тремя неизвестными , где

Основная матрица системы уравнений невырожденная, поскольку её определитель отличен от нуля:

Обратную матрицу A -1 составим одним из методов, описанных выше:

По формуле матричного метода решения систем линейных уравнений получим

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля.[9] Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

2.6 МетодКрамера

Метод Крамера применяется для решения систем линейных алгебраических уравнений, в которых число неизвестных переменных равно числу уравнений и определитель основной матрицы отличен от нуля.

Пусть нам требуется решить систему линейных уравнений вида

где x1, x2, …, xn – неизвестные переменные, ai j , i = 1, 2, …, n, j = 1, 2, …, n – числовые коэффициенты, b1, b2, …, bn — свободные члены. Решением СЛАУ называется такой набор значений x1, x2, …, xn, при которых все уравнения системы обращаются в тождества.

В матричном виде эта система может быть записана как, где

— основная матрица системы, ее элементами являются коэффициенты при неизвестных переменных, — матрица – столбец свободных членов, а — матрица – столбец неизвестных переменных. После нахождения неизвестных переменных x1, x2, …, xn, матрица становится решением системы уравнений и равенство A ⋅ X = B обращается в тождество A ⋅ X = B.

Будем считать, что матрица А – невырожденная, то есть, ее определитель отличен от нуля. В этом случае система линейных алгебраических уравнений имеет единственное решение, которое может быть найдено методом Крамера.

Метод Крамера основывается на двух свойствах определителя матрицы:

Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю:

Итак, приступим к нахождению неизвестной переменной x1. Для этого умножим обе части первого уравнения системы на А11 , обе части второго уравнения – на А21 , и так далее, обе части n-ого уравнения – на Аn1 (то есть, уравнения системы умножаем на соответствующие алгебраические дополнения первого столбца матрицы А):

Сложим все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных x1, x2, …, xn, и приравняем эту сумму к сумме всех правых частей уравнений:

Если обратиться к озвученным ранее свойствам определителя, то имеем

и предыдущее равенство примет вид

Аналогично находим x2. Для этого умножаем обе части уравнений системы на алгебраические дополнения второго столбца матрицы А:

Складываем все уравнения системы, группируем слагаемые при неизвестных переменных x1, x2, …, xn и применяем свойства определителя:

Аналогично находятся оставшиеся неизвестные переменные.

то получаем формулы для нахождения неизвестных переменных по методу Крамера

Если система линейных алгебраических уравнений однородная, то есть b1=b2=…=bn=0, то она имеет лишь тривиальное решение =x2=…=xn=0 (при |A|≠0). Действительно, при нулевых свободных членах все определители будут равны нулю, так как будут содержать столбец нулевых элементов. Следовательно, формулы дадут x1=x2=…=xn=0 .

Алгоритм решения систем линейных алгебраических уравнений методом Крамера.

Вычисляем определитель основной матрицы системы

и убеждаемся, что он отличен от нуля.

которые являются определителями матриц, полученных из матрицы А заменой k-ого столбца (k = 1, 2, …, n) на столбец свободных членов.

Выполняем проверку результатов, подставляя x1, x2, …, xn в исходную СЛАУ. Все уравнения системы должны обратиться в тождества. Можно также вычислить произведение матриц A ⋅ X, если в результате получилась матрица, равная B, то решение системы найдено верно. В противном случае в ходе решения была допущена ошибка.

Пример решения системы уравнений методом Крамера представлен в Приложении 4.

2.7 Метод Гаусса

Пусть нам требуется решить систему из n линейных алгебраических уравнений с nнеизвестными переменными вида

и пусть определитель ее основной матрицы отличен от нуля.

Будем считать, что α11≠0, так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на — , к третьему уравнению прибавим первое, умноженное на — , и так далее, к n-ому уравнению прибавим первое, умноженное на -. Система уравнений после таких преобразований примет вид

К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы

Будем считать, что (в противном случае мы переставим местами вторую строку с k-ой, где ). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего.

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений примет вид

Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего.

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как , с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.

При использовании метода Гаусса для решения систем линейных алгебраических уравнений следует избегать приближенных вычислений, так как это может привести к абсолютно неверным результатам.[8]

Решение системы уравнений методом Гаусса представлено в Приложении 5.

Системы уравнений, основная матрица которых прямоугольная или квадратная вырожденная, могут не иметь решений, могут иметь единственное решение, а могут иметь бесконечное множество решений.[1]

Метод Гаусса позволяет установить совместность или несовместность системы линейных уравнений, а в случае ее совместности определить все решения (или одно единственное решение).[7]

На определенном этапе исключения неизвестных переменных некоторые уравнения системы могут обратиться в тождества . Это говорит о том, что такие уравнения излишни, то есть, их можно смело убрать из системы уравнений и продолжить прямой ход метода Гаусса.

При проведении прямого хода метода Гаусса одно (или несколько) уравнений системы могут принять вид , где λ — некоторое число, отличное от нуля. Это говорит о том, что уравнение, которое обратилось в равенство , не может обратиться в тождество ни при каких значениях неизвестных переменных. Другими словами, система линейных алгебраических уравнений в этом случае несовместна (не имеет решения). Наиболее часто такие ситуации встречаются, когда число уравнений в системе больше числа неизвестных переменных.

Предположим, что мы выполняем прямой ход метода Гаусса, и мы подошли к моменту исключения неизвестной переменной xk, а на каком-то предыдущем i-ом шаге (i z then

Исследовательская работа » Решение систем методом Крамера»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Министерство образования, науки и молодежи Республики Крым Малая академия наук «Искатель»

Решение систем линейных уравнений методом Крамера

Шумилина Мария Сергеевна,

ученица 8-А класса

школа № 5» муниципального

образования городской округ

Шеина Елена Николаевна, учитель

общеобразовательная школа № 5 »

городской округ Красноперекопск

г. Красноперекопск , 2017

РАЗДЕЛ 1. Немного из истории……………………………………………………5

РАЗДЕЛ 2 . Определители n -ого порядка …………………………………………..7

2.1 . Правило вычисления определителя второго порядка.……………. 7

2.2 Вычисление определителей третьего порядка……………….. ………………..8

РАЗДЕЛ 3. Решение систем линейных уравнений методом Крамера ………. 10

3.1. Решение системы двух линейных уравнений с двумя неизвестными……..10

3.2. Решение системы трех уравнений с тремя неизвестными по формулам Крамера ……………………………………………………………………………14

3.3. Три случая при решении систем линейных уравнений……………………..19

3.4.Решение систем линейных уравнений с параметром………………………..21

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ …………………………….28

Миллионы людей занимаются математическими расчетами, иногда в силу влечения к таинствам математики и ее внутренней красоте, а чаще в силу профессиональной или иной необходимости, не говоря уже об учебе.

Многие задачи практики приводят к необходимости решать системы линейных уравнений. При конструировании инженерных сооружений, обработке результатов измерений, решении задач планирования производственного процесса и ряда других задач техники, экономики, научного эксперимента приходится решать системы линейных уравнений.

Не счесть приложений математики, в которых решение систем уравнений является необходимым элементом решения задачи. Способов решения систем уравнений существует много: сложения, подстановки, графический, с помощью обратной матрицы, методом исключения неизвестных, метод Крамера. Какой из них самый рациональный? Среди неизвестных мне методов я заинтересовалась методом Крамера или методом определителей.

При решении систем линейных уравнений в школе на уроках алгебры, мы использовали такие способы, как сложение, подстановка и графический. Каждый способ удобен для определенной системы. В представленной мной работе рассматриваются аналитические методы решения систем уравнений со многими неизвестными с использованием метода Крамера. В основе этого метода лежат элементарные преобразования, осуществляемые над коэффициентами системы, записанными в специальные таблицы – определители.

Применение опыта решения систем линейных уравнений с помощью определителей способствует развитию логической культуры.

Решение систем уравнений с большим количеством неизвестных методом Крамера значительно облегчает работу.

Решение систем линейных уравнений мы можем встретить в других областях науки.

Системы линейных уравнений встречаются на экзаменах и умение решать их несколькими способами значительно увеличивает шанс справиться с заданием.

Целью данной работы является исследование точных методов решения систем линейных алгебраических уравнений с помощью метода Крамера.

1. Изучить литературу по данной теме.

2. Научиться решать системы линейных уравнений методом Крамера.

3. Научиться применять метод Крамера для решения систем линейных уравнений, содержащих параметр.

Объект исследования: Метод Крамера.

Предмет исследования: Системы линейных уравнений.

Гипотеза: С помощью данного метода увеличивается скорость решения систем линейных уравнений.

РАЗДЕЛ 1. Немного из истории

Крамер родился в семье франкоязычного врача. С раннего возраста показал большие способности в области математики. В 18 лет защитил диссертацию. В 20-летнем возрасте Крамер выставил свою кандидатуру на вакантную должность преподавателя на кафедре философии Женевского университета. Кандидатур было три, все произвели хорошее впечатление, и магистрат принял соломоново решение: учредить отдельную кафедру математики и направить туда (на одну ставку) двух «лишних», включая Крамера, с правом путешествовать по очереди за свой счёт.

1727: Крамер воспользовался этим правом и 2 года путешествовал по Европе, заодно перенимая опыт у ведущих математиков — Иоганна Бернулли и Эйлера в Базеле, Галлея и де Муавра в Лондоне, Мопертюи и Клеро в Париже и других. По возвращении он вступает с ними в переписку, продолжавшуюся всю его недолгую жизнь.

1728: Крамер находит решение Санкт-Петербургского парадокса, близкое к тому, которое 10 годами спустя публикует Даниил Бернулли.

1729: Крамер возвращается в Женеву и возобновляет преподавательскую работу. Он участвует в конкурсе, объявленном Парижской Академией, задание в котором: есть ли связь между эллипсоидной формой большинства планет и смещением их афелиев? Работа Крамера занимает второе место (первый приз получил Иоганн Бернулли).

В свободное от преподавания время Крамер пишет многочисленные статьи на самые разные темы: геометрия, история математики, философия, приложения теории вероятностей. Крамер также публикует труд по небесной механике (1730) и комментарий к ньютоновской классификации кривых третьего порядка (1746).

Около 1740 года Иоганн Бернулли поручает Крамеру хлопоты по изданию сборника собрания своих трудов. В 1742 году Крамер публикует сборник в 4 томах, а вскоре (1744) выпускает аналогичный (посмертный) сборник работ Якоба Бернулли и двухтомник переписки Лейбница с Иоганном Бернулли. Все эти издания имели огромный резонанс в научном мире.

1747: второе путешествие в Париж, знакомство с Даламбером.

1751: Крамер получает серьёзную травму после дорожного инцидента с каретой. Доктор рекомендует ему отдохнуть на французском курорте, но там его состояние ухудшается, и 4 января 1752 года Крамер умирает

РАЗДЕЛ 2 . Определители n -ого порядка

2.1. Правило вычисления определителя второго порядка.

Определителем n -го порядка называется число  n , составленное по определенному правилу и записываемое в виде квадратной таблицы

(1)

Где а 11 , а 12 , а 13 , …- числовые коэффициенты

Значение определителя  n находится по следующему правилу.

(3)

2.2 Вычисление определителей третьего порядка.

Для вычисления определителей третьего порядка существует такие правила.

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

Пример 3. Вычислить определитель методом треугольников.

=31(-2)+331+(-1) 4(-2)-33(-2)-34(-2)-(-1) 11= -6+9+8+18+24+1=54 Ответ. 54

Разложение определителя по строке

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку, в которой есть нули.

Пример 4 . Разложить по первой строке, вычислить определитель Решение.

= а 11 А 11 + а 12 А 12 + а 13 А 13= 1(-1) 1+1 + 2(-1) 1+2 + 3(-1) 1+3 = =11 (-3)+2(-1) (-6) +31(-3)=-3+12-9=0

РАЗДЕЛ 3 . Решение систем линейных уравнений методом Крамера

Метод Крамера – это метод решения систем линейных уравнений. Он применяется только к системам линейных уравнений, у которых число уравнений совпадает с числом неизвестных и определитель отличен от нуля. Любая крамеровская система уравнений имеет единственное решение

3.1. Решение системы двух линейных уравнений с двумя неизвестными.

Сначала рассмотрю правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? Ведь простейшую систему можно решить школьным методом, методом сложения или подстановки. Более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными. Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера.

Рассмотрю систему уравнений

На первом шаге вычислю определитель , его называют главным определителем системы .

В случае если правило Крамера не поможет. Если, то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
Корни уравнения находим по формулам:
,

Решить систему линейных уравнений

Решение : Решим систему по формулам Крамера

= =1(-4)-(-2)3 = -4+6=20

Определитель ∆0, следовательно, заданная система может быть решена методом Крамера.

Вычислим определитель ∆ х , для этого заменим первый столбец в главном определителе на столбец свободных членов, получим

х = =1(-4)-(-2)7 = -4+14=10,

Аналогично, заменяя второй столбец в главном определителе на столбец свободных членов, получим

у = =17-13 = 7-3=4

Далее по формулам Крамера находим неизвестные переменные:

х= ==5, у===2

Пример 2 . Решить систему линейных уравнений:

Согласно методу Крамера имеем:

= =34-21 = 12-2=100

х = =14-2(-3) = 4+6=10,

= =3(-3)-11 = -9-1=-10

Далее по формулам Крамера находим неизвестные переменные:

х= ==1, у===-1

Решить систему линейных уравнений

Решение : Коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

= =50611-6666 = 5566-4356=12100 , значит, система имеет единственное решение.

а = =2315,111-66392,3 = 25466,1-25891,8=-425,7,

b = =506392,3-2315,166 = 198503,8-152796,6=45707,2

а= =-0,35, b ==37,7

Ответ: а -0,35; b 37,7

Оба корня обладают бесконечными хвостами, и найдены приближенно

Пример 4.
Решить систему по формулам Крамера. Ответ представить в обыкновенных неправильных дробях.

Решим систему по формулам Крамера

= =73-(-5)1 = 21+5=260

Определитель ∆0, следовательно, заданная система может быть решена методом Крамера.

Вычислим определитель ∆ х , для этого заменим первый столбец в главном определителе на столбец свободных членов, получим

х = =233-11 = 69-1=68,

Аналогично, заменяя второй столбец в главном определителе на столбец свободных членов, получим

у = =71-(-5)23 = 7+115=1220

Далее по формулам Крамера находим неизвестные переменные:

х= =, у==

Ответ: х=, у=

3.2. Решение системы трех уравнений с тремя неизвестными по формулам Крамера .

Перехожу к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если, то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:

, ,

И, наконец, ответ рассчитывается по формулам:

, ,
Случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Решить систему по формулам Крамера.

Решение : Решу систему по формулам Крамера. Обозначу главный определитель D , тогда

, значит, система имеет единственное решение.

Встречаются системы, в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная х 1 , во втором – переменная х 2 . В таких случаях очень важно правильно записать главный определитель:
– на месте отсутствующих переменных ставятся нули.

Пример 6. Решить систему линейных уравнений методом Крамера:

.

Решение. Нахожу главный определитель системы:

Следовательно, система имеет единственное решение. Для нахождения её решения вычисляю определители

По формулам Крамера нахожу:


Итак, (1; 0; -1) – единственное решение системы.

Пример 7. Решить систему линейных уравнений методом Крамера:

.

Решение. Нахожу главный определитель системы:

Следовательно, система имеет единственное решение. Для нахождения её решения вычисляю определители

По формулам Крамера нахожу:

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Нахожу определители системы:

Пример 9. Решите систему уравнений по формулам Крамера

Решение.

Ответ : х=1, у=2, z=3

3.3. Три случая при решении систем линейных уравнений

При решении системы линейных уравнений методом Крамера могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение (система совместна и определённа)

Условия:

Второй случай: система линейных уравнений имеет бесконечное множество решений (система совместна и неопределённа)

Условия: , ,

Третий случай: система линейных уравнений решений не имеет (система несовместна)

Условия: .

Итак, система линейных уравнений с называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Пример 10. Решить систему линейных уравнений методом Крамера:

Решение. Нахожу главный определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо имеет бесконечное множество решений, либо не имеет решений. Для уточнения вычисляю определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Ответ: нет решений

3.4.Решение систем линейных уравнений с параметром

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число.

Пример 11. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое число.

Решение. Нахожу главный определитель системы:

Главный определитель отличен от нуля, значит система имеет единственное решение.

Нахожу определители при неизвестных

По формулам Крамера нахожу:

, .

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое число.

Пример 12. Решить систему линейных уравнений методом Крамера:

Решение. Нахожу главный определитель системы:

=-24abc-75abc-12abc+30abc+18 abc +40 abc =-23 abc

Нахожу определители при неизвестных

=0-45ab 2 c 2 -8 ab 2 c 2 +18 ab 2 c 2 +12 ab 2 c 2 +0=-23 ab 2 c 2

=8a 2 bc 2 +0+9 a 2 bc 2 -10 a 2 bc 2 -0-30 a 2 bc 2 =-23 a 2 bc 2

=-36a 2 b 2 c-30 a 2 b 2 c +0-0+27 a 2 b 2 c +16 a 2 b 2 c =-23 a 2 b 2 c

По формулам Крамера нахожу:

, , .

Пример 13. Решите систему уравнений при различных значениях параметра p:

Система имеет единственное решение, если Δ ≠ 0.

Поэтому, p 30,-30 .

При p 30,-30 х= , у=

При p = 30 получаем систему уравнений , которая не имеет решений.

При p = –30 система принимает вид и, следовательно, имеет бесконечное множество решений

Пример 14. Для всех значений параметра а решить систему уравнений

(а+5)х+(2а+3)у=3а+2

Решение: Нахожу определители системы:

== (а+5)(5а+6) – (3а+10) (2а+3)= 5а 2 +31а+30-6а 2 -29а-30=-а 2 +2а=а(2-а)

х ==

(3а+2) (5а+6) –(2а+4)(2а+3)=15а 2 +28а+12-4а 2 -14а-12=11а 2 +14а=а(11а+14)

у ==

(а +5) (2а+4)-(3а+10)(3а+2)=2а 2 +14а+20-9а 2 -36а-20=-7а 2 -22а=-а(7а+22)

1) =а(2-а) 0, значит а0 или а2

Тогда х=, у=

2) = а(2-а)= 0, значит а=0 или а=2

При а=0 определители х = у =0

Тогда система имеет вид:

5х+3у=2

10х+6у=4, а значит имеет бесконечное множество решений

При а=2, х 0 . Этого достаточно, чтобы утверждать, что система не имеет решений.

Ответ: 1) если а 0 и а 2, то х=, у=

2) если а=0, то система имеет бесконечное множество решений ,

3) если а=2, то система не имеет решений.

Пример 15. Для всех значений параметров а и b решить систему уравнений

(а+1)х+2у=b

Решение: = = а+1-2b

x = = b -6 y = = 3 a +3- b 2

1) = а+1-2b0, значит а2b-1. Тогда

х= у=

2)

Подставив выражение параметра а в систему, получим:

2bx+2y=b 2bx+2y=b

Если b6, то система не имеет решений

Если b=6, а=2b-1=2*6-1=11, то система имеет бесконечное множество решений

Ответ: 1) если , (а ), то x= , y=

2) если b6, a11, то система не имеет решений

3) если b=6, а=11, то система имеет бесконечное множество решений

Пример 16 . При каких значения параметра а система уравнений не имеет решений?

Система не имеет решений, если = 0; x 0; y 0.

= -a – 2 = 0; значит a = -2;

=- 4 – 1=-5 0 ;

= a – 8 0, a 8

Пример 17 . При каких значения параметра а система уравнений не имеет решений?

= (a + 1) (-a+2) – 2 = -a 2 +2a – a + 2 – 2 = — a 2 + a = 0

при a = 0 х = 6 – 6 = 0; у = 6 – 6 = 0;

Вывод: при а = 0 система имеет бесконечное множество решений.

2) при а = 1

х = 3 – 6 = -3 у = 12 – 6 = 6, т.е. система не имеет решений.

Пример 18 . При каких значениях параметров а и в система уравнений имеет бесчисленно много решений?

Система имеет бесчисленно много решений, если = 0; x = 0; y =0.

= 2(a – 1) – 9b = 2a – 9b – 2.

x =4-(-b)= 4+ b =0 при b= -4;

y = -a -17= 0 при а=-17;

Проверка: ∆=2∙(-17)-9∙(-4)-2=-34+36-2=0 (верно)

Ответ: при a = -17; b = -4

В представленной работе рассматривается метод Крамера для решения систем уравнений со многими неизвестными. В основе этого метода лежат элементарные преобразования, осуществляемые над коэффициентами системы, записанными в специальные таблицы – определители .

В результате работы:

1. Изучена литература по методам решения систем уравнений,

2. Подобраны и решены системы линейных уравнений методом Крамера.

Вывод: Метод Крамера ускоряет процесс решения некоторых систем линейных уравнений и его можно изучать на уроках алгебры, на занятиях элективных курсов по математике в 7- 9 классах как дополнительный метод решения систем уравнений.


источники:

http://school-science.ru/2/7/31200

http://infourok.ru/issledovatelskaya-rabota-reshenie-sistem-metodom-kramera-2623673.html