Выясните имеет ли данное уравнение единственное решение

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение систем линейных алгебраических уравнений (СЛАУ)
Метод Гаусса, матричный метод, метод Крамера, исследование на совместность (теорема Кронекера-Капелли), определение количества решений, нахождение нормальной фундаментальной системы решений.

С помощью данной математической программы вы можете решить и исследовать систему линейных алгебраических уравнений (СЛАУ).

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Ввод дробного числа в виде десятичной дроби.
При вводе десятичной дроби, целую часть от дробной части можно отделять точкой или запятой :
Ввод: -2.34
Результат: \( -2<,>34 \)

Ввод: -1,15
Результат: \( -1<,>15 \)

Ввод дробного числа в виде обыкновенной дроби.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: $$ -\frac<2> <3>$$

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 5&8/3
Результат: $$ 5\frac<8> <3>$$
Помните, что на ноль делить нельзя!

RND CFracNum Fill RND int Fill Start MathJax
Сюда ввести строку с GET параметрами :

Немного теории.

Системы линейных алгебраических уравнений

Основные определения

Система \(m\) линейных алгебраических уравнений с \(n\) неизвестными (сокращенно СЛАУ) представляет собой систему вида
\( \left\< \begin a_<11>x_1 + a_<12>x_2 + \cdots + a_<1n>x_n = b_1 \\ a_<21>x_1 + a_<22>x_2 + \cdots + a_<2n>x_n = b_2 \\ \cdots \\ a_x_1 + a_x_2 + \cdots + a_x_n = b_m \end \right. \tag <1>\)

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от \(n\) переменных \( x_1 , \ldots x_n \), а линейными потому, что эти многочлены имеют первую степень.

Числа \(a_ \in \mathbb \) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения \(i\) и номером неизвестного \(j\). Действительные числа \( b_1 , \ldots b_m \) называют свободными членами уравнений.

СЛАУ называют однородной, если \( b_1 = b_2 = \ldots = b_m = 0 \). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных \( x_1^\circ, \ldots , x_n^\circ \), при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУ всегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной. При \(m=n\), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты \(a_\) СЛАУ при одном неизвестном \(x_j\) как элементы столбца, а \(x_j\) как коэффициент, на который умножается столбец, из (1) получаем новую форму записи СЛАУ:
\( \begin a_ <11>\\ a_ <21>\\ \vdots \\ a_ \end x_1 + \begin a_ <12>\\ a_ <22>\\ \vdots \\ a_ \end x_2 + \ldots + \begin a_ <1n>\\ a_ <2n>\\ \vdots \\ a_ \end x_n = \begin b_1 \\ b_2 \\ \vdots \\ b_m \end \)
или, обозначая столбцы соответственно \( a_1 , \ldots , a_n , b \),
\( x_1 a_1 + x_2 a_2 + \ldots + x_n a_n = b \tag <2>\)

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца \(b\) в виде линейной комбинации столбцов \( a_1, \ldots, a_n \). Соотношение (2) называют векторной записью СЛАУ.

Поскольку \(A \;,\; X\) и \(B\) являются матрицами, то запись СЛАУ (1) в виде \(AX=B\) называют матричной. Если \(B=0\), то СЛАУ является однородной и в матричной записи имеет вид \(AX=0\).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида \(AX=B\)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

«Триединство» форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеет для неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
\( A = \begin a_ <11>& a_ <12>& \cdots & a_ <1n>\\ a_ <21>& a_ <22>& \cdots & a_ <2n>\\ \vdots & \vdots & \ddots & \vdots \\ a_ & a_ & \cdots & a_ \end \)
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
\( (A|B) = \left( \begin a_ <11>& a_ <12>& \cdots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \cdots & a_ <2n>& b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_ & a_ & \cdots & a_ & b_m \end \right) \)
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно (если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ \(AX=B\) необходимо и достаточно, чтобы ранг её матрицы \(A\) был равен рангу её расширенной матрицы \( (A|B) \).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется по формулам Крамера :
$$ x_i = \frac<\Delta_i> <|A|>\;,\quad i=\overline <1,n>\tag <3>$$
где \(\Delta_i\) — определитель матрицы, получающейся из матрицы \(A\) заменой \(i\)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методы нахождения решений.

Однородные системы

Теорема. Если столбцы \( X^<(1)>, X^<(2)>, \ldots , X^ <(s)>\) — решения однородной СЛАУ \(AX=0\), то любая их линейная комбинация также является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения \( X^<(1)>, \ldots , X^ <(s)>\) системы \(AX=0\), чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из \(k=n-r\) линейно независимых столбцов, являющихся решениями однородной СЛАУ \(AX=0\), где \(n\) — количество неизвестных в системе, а \(r\) — ранг её матрицы \(A\), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице \(A\) однородной СЛАУ \(AX=0\) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающих этим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, или независимыми.

Теорема. Пусть дана однородная СЛАУ \(AX=0\) с \(n\) неизвестными и \( \textA = r \). Тогда существует набор из \(k=n-r\) решений \( X^<(1)>, \ldots , X^ <(k)>\) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решений называют фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^ <(1)>+ \ldots + c_kX^ <(k)>$$
где постоянные \( c_i \;, \quad i=\overline <1,k>\), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ \(AX=B\). Заменив столбец \(B\) свободных членов нулевым, получим однородную СЛАУ \(AX=0\), соответствующую неоднородной СЛАУ \(AX=B\). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец \(X^\circ\) — некоторое решение СЛАУ \(AX=B\). Произвольный столбец \(X\) является решением этой СЛАУ тогда и только тогда, когда он имеет представление \(X = X^\circ + Y \), где \(Y\) — решение соответствующей однородной СЛАУ \(AY=0\).

Следствие. Пусть \(X’\) и \(X»\) — решения неоднородной системы \(AX=B\). Тогда их разность \( Y = X’ — X» \) является решением соответствующей однородной системы \(AY=0\).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одно её решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых, найти частное решение \(X^\circ\) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть \(X^\circ\) — частное решение СЛАУ \(AX=B\) и известна фундаментальная система решений \( X^<(1)>, \ldots , X^ <(k)>\) соответствующей однородной системы \(AX=0\). Тогда любое решение СЛАУ \(AX=B\) можно представить в виде $$ X = X^\circ + c_1 X^ <(1)>+ c_2 X^ <(2)>+ \ldots + c_k X^ <(k)>$$
где \( c_i \in \mathbb \;, \quad i=\overline <1,k>\).
Эту формулу называют общим решением СЛАУ.

Помогите , пожалуйста, имеет ли данное уравнение решение?

Алгебра | 5 — 9 классы

Помогите , пожалуйста, имеет ли данное уравнение решение?

Дана система уравнений : y = mx y = 7x — 2 Установить, при каких значениях m система : 1) Не имеет решений ; 2) Имеет единственное решение ?

Дана система уравнений : y = mx y = 7x — 2 Установить, при каких значениях m система : 1) Не имеет решений ; 2) Имеет единственное решение ;

Уравнение 4a + 2x = 1 — 1, 5х имеет отрицательный корень?

Уравнение 4a + 2x = 1 — 1, 5х имеет отрицательный корень?

Сколько решений имеет система уравнений х + у = 2 и у = х3?

Сколько решений имеет система уравнений х + у = 2 и у = х3?

Помогите, пожалуйста, срочнооо!

(желательно, с графиком).

Дано (а — 1)(b + 2)Х = (а + 1)(b + 2)?

Дано (а — 1)(b + 2)Х = (а + 1)(b + 2).

При каких значениях а и b уравнение : а) не имеет решение?

В) имеет бесконечно много решений?

Дана система уравнений <у = 3х, у = ах + 2?

Дана система уравнений <у = 3х, у = ах + 2.

Выяснить, при каких значениях а система

1)не имеет решения

2)имеет единственное решение.

Помогите пожалуйстапри каких значениях «a» система уравнений : y = ax, y = — 3x + 21 ) не имеет решений 2) имеет единственное решения?

при каких значениях «a» система уравнений : y = ax, y = — 3x + 2

1 ) не имеет решений 2) имеет единственное решения?

Имеет ли решения система и сколько?

Имеет ли решения система и сколько?

Помогите пожалуйста написать решения.

Дана система уравнений : у = — 5х, y = mx — 3 установить, при каких значениях m система : 1) не имеет решений ; 2) имеет единственное решение?

Дана система уравнений : у = — 5х, y = mx — 3 установить, при каких значениях m система : 1) не имеет решений ; 2) имеет единственное решение.

Дана система уравнений : у = — 5х, y = mx — 3 установить, при каких значениях m система : 1) не имеет решений ; 2) имеет единственное решение?

Дана система уравнений : у = — 5х, y = mx — 3 установить, при каких значениях m система : 1) не имеет решений ; 2) имеет единственное решение.

Выясните, имеет ли решение данная система?

Выясните, имеет ли решение данная система.

Если имеет, то сколько решений?

3х + 2у = 7, 6х + 4у = 1.

Выясните, имеет ли решение данная система.

Если имеет, то сколько решений?

5х – у = 11, — 11х + 2у = — 22 пожалуйста помогите очень надо заранее спасибо.

При каких значениях a уравнение |x ^ 2 + 2ax| = 1 имеет три решения?

При каких значениях a уравнение |x ^ 2 + 2ax| = 1 имеет три решения.

На этой странице сайта вы найдете ответы на вопрос Помогите , пожалуйста, имеет ли данное уравнение решение?, относящийся к категории Алгебра. Сложность вопроса соответствует базовым знаниям учеников 5 — 9 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы помогут найти нужную информацию.

А / а + 2b = a / a + 2ab / a = 2ab + a / a — 2b / 2b — a = — 2b / 2b — 2ab / 2b = — 2b — 2ab / 2b.

10000 = х³х = ∛10000 = ∛10⁴ = 10∛10.

Решение в приложении.

4 — 36х ^ 2 похоже на разность квадратов 2 ^ 2 — (6x) ^ 2 = (2 — 6x)(2 + 6x) Этого хватит или надо выносить двойки из под скобок? = 2 ^ 2 * (1 — 3x)(1 + 3x).

3. Существование и единственность решений дифференциального уравнения

1. Автономные уравнения на прямой

Неособая точка. Если точка $x_0$ является неособой, то есть $f(x_0)≠0$, решение находится по формуле Барроу, которую мы обсуждали в предыдущей главе:

Если вы не доверяете теореме об обратной функции, можно рассуждать так. Известно, что $f(x_0)≠0$; допустим для определённости (как говорят «без ограничения общности»), что $f(x_0)>0$ (обратный случай рассматривается полностью аналогично). Поскольку функция $f$ непрерывна вблизи точки $x_0$, существует её окрестность $U$, на которой функция $f$ принимает только положительные значения. Таким же свойством обладает и функция $\frac<1>$, являющаяся подынтегральным выражением в (3) . Следовательно, функция $F$ монотонно возрастает на $U$. Следовательно, у неё существует обратная функция.

Рассмотрим теперь второй возможный случай.

Особая точка. Если $f(x_0)=0$, очевидно, решением является константа $x=x_0$: в точке $x_0$ уравнение требует, чтобы производная решения была нулевой, то есть решение в этой точке не растёт и не убывает, а значит остаётся постоянным. ∎

Вот такое доказательство. Убедительно?

Тут нужно сделать театральную паузу. А потом рассмотреть пример.

Как так может быть? Мы доказали неверную теорему? Математика — сплошной обман?

А вот и нет. У нас просто ошибка в доказательстве: разбирая второй случай, мы сказали, что существует решение $x=x_0$, но мы не доказали на самом деле, что других решений с таким начальным условием нет. Рассуждение о том, что решение с нулевой производной в некоторой точке «в этой точке не растёт и не убывает, а значит остаётся постоянным» легко опровергается: функция $x=t^3$ имеет нулевую производную в нуле, но при этом не является константой вблизи нуля.

Значит ли это, что теорема неверна? Снова нет. Теорема верна. Если вы внимательно посмотрите на её формулировку, то увидите, что уравнение, рассмотренное в примере, не удовлетворяет условию теоремы: правая часть $f(x)=x^<2/3>$ не является гладкой функцией в точке $x=0$: её производная там стремится к бесконечности.

Этот пример показывает, что требование $C^1$-гладкости правой части в формулировке теоремы 1 является важным: если его выбросить, теорема оказывается неверной. (Впрочем, его можно ослабить: вместо гладкости требовать липшицевости правой части.) Если же это требование выполняется, теорема верна. Докажем это.

Пусть $f(x_0)=0$. Функция $x(t)=x_0$ в этом случае всегда будет решением уравнения $\dot x=f(x)$. Нам необходимо показать, что других решений не будет, то есть исключить ситуацию, когда решение принимает значение $x_0$ (быть может, на некотором отрезке по оси $y$), а затем «убегает» из этой точки. Мы докажем, что если $f\in C^1$, то «побег» запрещен.

Доказываем от противного: пусть удалось убежать из точки $x_0$ в какую-то точку $x_2$, то есть существует решение $x=x(t)$, принимающее значение $x_0$ при $t=t_0$ и значение $x_2$ при каком-то другом $t=t_2$. Возьмём какую-то точку $x_1$ между $x_0$ и $x_2$. Поскольку решение непрерывно, должен существовать момент времени $t_1\in (t_0, t_2)$, в который мы окажемся в точке $x_1$ (то есть $x(t_1)=x_1$). Посчитаем время $t_2-t_1$, которое потребуется, чтобы от $x_1$ добраться до $x_2$, см. рис. 1 .

Если мы это докажем, то придём к противоречию с предположением, что нам удалось убежать за конечное время из $x_0$ в какую-то другую точку: понятно, что $t_2 — t_0 > t_2 — t_1$ и если вторая величина может быть сколь угодно большой, то первая не может быть конечным числом.

Смысл. Переводя на русский язык, можно сказать, что гладкая функция вблизи своего нуля растёт не быстрее, чем некоторая линейная функция. В это легко поверить. Предположим для простоты, что $x_0=0$. Возьмём функцию $f(x)$, такую, что $f(0)=0$. Вблизи нуля она хорошо приближается касательной $y=f'(0)x$, хотя и может проходить чуть выше или чуть ниже касательной. Если построить прямую, наклон которой будет несколько больше, чем наклон касательной, то график функции окажется запертым между этой прямой и её отражением относительно горизонтальной оси. (См. рис 2 .)

2. Общий случай

Существует такая окрестность $U\ni t_0$, что на $U$ существует и единственно решение $x\colon U\to \mathbb R^n$ задачи (6) .

3. Метод разделения переменных: магия продолжается

Обоснование. Чтобы магия не казалось такой загадочной, приведём обоснование этого метода. Это не самое лучшее с моей точки зрения обоснование: в нём слишком много формул и слишком мало картинок. Чуть позже мы обсудим более геометрическое доказательство, но оно потребует дополительных построений.

Итак, пусть $x=x(t)$ — функция, удовлетворяющая соотношению (8) . Продифференцируем почленно это соотношение по переменной $t$.


источники:

http://algebra.my-dict.ru/q/8608138_pomogite-pozalujsta-imeet-li-dannoe-uravnenie/

http://math-info.hse.ru/f/2015-16/nes-ode/chapter03.html