Выясните имеет ли система уравнений решения и сколько

Решение на Задание 1062 из ГДЗ по Алгебре за 7 класс: Макарычев Ю.Н.

Условие

Решение 1

Решение 2

Поиск в решебнике

Популярные решебники

Издатель: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, 2013г.

Издатель: А.Г. Мордкович, 2013г.

Издатель: А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. 2015г.

Исследование системы линейных уравнений с двумя переменными на количество решений

Разделы: Математика

Цель урока: сформировать умение по виду системы двух линейных уравнений с двумя переменными определять количество решений системы.

Задачи:

  • Образовательные:
    • повторить способы решения систем линейных уравнений;
    • связать графическую модель системы с количеством решений системы;
    • найти связь между соотношением коэффициентов при переменных в системе и количеством решений.
  • Развивающие:
    • формировать способности к самостоятельным исследованиям;
    • развивать познавательный интерес учащихся;
    • развивать умение выделять главное, существенное.
  • Воспитательные:
    • воспитывать культуру общения; уважение к товарищу, умение достойно вести себя. закреплять навыки работы в группе;
    • формировать мотивацию на здоровый образ жизни.

Тип урока: комбинированный

I. Организационный момент (нацелить учащихся на урок)

– На предыдущих уроках мы научились решать системы двух линейных уравнений с двумя переменными разными способами. Сегодня на уроке нам предстоит ответить на вопрос: «Как, не решая систему уравнений определить, сколько же решений она имеет?», поэтому тема урока называется «Исследование системы линейных уравнений с двумя переменными на количество решений ». Итак, начнём урок. Соберёмся с силами. В четыре приёма глубоко вдохнём воздух через нос и в пять приёмов с силой выдохнем, задувая воображаемую свечку. Повторим это 3 раза. Очень быстро активизируем свой мозг. Для этого интенсивно промассажируем межбровную точку: указательным пальцем правой руки делаем 5 круговых движений в одну сторону и в другую. Повторим это 2-3 раза.

II. Проверка домашнего задания (коррекция ошибок)

Показать решение системы разными способами:

А) методом подстановки;
Б) Методом сложения;
В) по формулам Крамера;
Г) Графически.

Пока на доске готовятся к ответам по домашнему заданию, с остальными учениками начинается подготовка к следующему этапу урока.

III. Этап подготовки к усвоению нового материала (актуализация опорных знаний)

– Если вы знаете ответы на вопросы, но вдруг растерялись и всё сразу забыли, попробуйте собраться, убедить себя, что вы всё знаете и у вас всё получится. Хорошо помогает обыкновенный массаж всех пальцев. Во время обдумывания массажируйте все пальчики от основания к ногтю.

– Что называют системой двух уравнений?

– Что значит решить систему линейных уравнений?
– Что является решением системы линейных уравнений?
– Будет ли пара чисел (– 3; 3) решением системы уравнений:

– Расскажите, в чём суть каждого известного вам способа решения систем линейных уравнений с двумя переменными. (Рекомендуется общение в парах)

Ответы учеников сопровождаются показом слайдов 1-14 (Презентация) учителем. (можно одним из учеников). Проверяем домашнее задание (слушаем ответы учеников у доски).

Учитель: Для решения специфических систем уравнений существует ещё один способ, называется он методом подбора решения. Попробуйте, не решая подобрать решение системы уравнений: . Объясните суть метода.

– Найдите решение системы уравнений:

а) б) в)

– Дано уравнение a + b =15, добавьте такое уравнение, чтобы решением полученной системы была пара чисел (– 12; 27)
Перечислите ещё раз все способы решения систем линейных уравнений, с которыми вы познакомились.

IV. Этап усвоения новых знаний (исследовательская работа)

– Прежде чем переходить к следующему этапу урока, немного отдохнём.
Сидя на стуле – расслабьтесь, примите позу пиджака, висящего на вешалке,
«Постреляйте» глазами в соседей. А затем вспомним про «царственную осанку»: спина прямая, мышцы головы без напряжения, выражение лица очень значительное, соберёмся с мыслями, для чего сделаем массаж межбровной точки или пальчиков и приступим к дальнейшей работе.

Учитель: Мы научились решать системы линейных уравнений с двумя переменными разными способами и знаем, что система таких уравнений может иметь:

А) одно решение;
Б) не иметь решений;
В) много решений.

А нельзя ли, не прибегая к решению, ответить на вопрос: сколько же решений имеет система уравнений? Сейчас мы с вами проведём небольшое исследование.
Для начала разобьемся на три исследовательские группы. Составим план нашего исследования, ответив на вопросы:

1) Что представляет собой графическая модель системы линейных уравнений с двумя переменными?
2) Как могут располагаться две прямые на плоскости?
3) Как зависит количество решений системы от расположения прямых?

(После ответов учащихся используем слайды 6-10 Презентации.)

Учитель: Значит основа нашего исследования состоит в том, чтобы по виду системы понять, как располагаются прямые.
Каждая исследовательская группа решает эту задачу на конкретной системе уравнений по плану (Приложение 1).
Система для группы №1.

Система для группы №2.

Система для группы №3.

На выполнение работы даётся 5 минут, затем делимся своими выводами с одноклассниками. (Приложение 2), а также обращаемся к слайдам 15-17 Презентации.

V. Релаксация

Предлагаю отдохнуть, расслабиться: физкультминутка или психологический тренинг. (Приложение 3)

VI. Закрепление нового материала

А) Первичное закрепление

Используя полученные выводы, ответьте на вопрос: сколько решений имеет система уравнений

а) б) в)

Итак, прежде чем решать систему, можно узнать, сколько она имеет решений.

Б) решение более сложных задач по новой теме

1) Дана система уравнений

– При каких значениях параметра a данная система имеет единственное решение?

(Работа выполняется в группах по 4 человека: пары поворачиваются друг к другу)

– При каких значениях параметра a данная система не имеет решений?
– При каких значениях параметра данная система уравнений имеет много решений?

2) Дано уравнение – 2x + 3y = 12

Добавьте ещё одно уравнение так, чтобы система этих уравнений имела:

А) одно решение;
Б) бесконечно много решений.

3) Провести полное исследование системы уравнений на наличие её решений:

VII. Рефлексия. Методика «Мухомор»

На дополнительной доске (или на отдельном плакате) нарисован круг, разбитый на секторы. Каждый сектор – это вопрос, рассмотренный на уроке. Ученикам предлагается
поставить точку:

  • ближе к центру, если ответ на вопрос не вызывает сомнения;
  • в середину сектора, если сомнения есть;
  • ближе к окружности, если вопрос остался не понятым; (Приложение 4)

VIII. Домашнее задание

Алгебра-7, под редакцией Теляковского. Параграфы 40-44, №1089,1095а), решать любым способом.
Выяснить, при каком значении a система имеет одно решение, много решений, не имеет решений

– Итак: наш урок подошёл к концу. Приготовим себя к перемене: сцепите руки замком, положите их на затылок. Положите голову на парту, резко сядьте прямо, примите «царственную» позу. Повторите это ещё раз.

– Урок окончен. Всем спасибо. Подойдите к доске и сделайте отметку на предложенном рисунке. До свидания.

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:


источники:

http://urok.1sept.ru/articles/597722

http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij