Взаимное расположение двух плоскостей в пространстве уравнения

Взаимное расположение двух плоскостей в пространстве.
Признаки параллельности двух плоскостей

Признаки параллельности плоскостей

Две плоскости в пространстве могут быть параллельными или могут пересекаться, как показано в следующей таблице.

ФигураРисунокОпределение
Две пересекающиеся плоскостиДве плоскости называют пересекающимися , если они не совпадают, и у них есть общие точки. В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия.
Две параллельные плоскостиДве плоскости называют параллельными , если они не имеют общих точек.

Определение:
Две плоскости называют пересекающимися , если они не совпадают, и у них есть общие точки. В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия.

Определение:
Две плоскости называют параллельными , если они не имеют общих точек.

Признаки параллельности двух плоскостей

Первый признак параллельности двух плоскостей . Если две пересекающиеся прямые пересекающиеся прямые , лежащие в одной плоскости, соответственно параллельны параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.

Доказательство . Рассмотрим рисунок 1, на котором изображены плоскости α и β

Прямые a и b лежат в плоскости α и пересекаются в точке K . Прямые c и d лежат в плоскости β и параллельны прямым a и b соответственно.

Будем доказывать первый признак параллельности двух плоскостей методом «от противного». Для этого предположим, что плоскости α и β не параллельны. Следовательно, плоскости α и β должны пересекаться, причём пересекаться по некоторой прямой. Обозначим прямую линию, по которой пересекаются плоскости α и β буквой l (рис.2) и воспользуемся признаком параллельности прямой и плоскости.

Плоскость α проходит через прямую a , параллельную прямой c , и пересекает плоскость β по прямой l . Отсюда, в силу признака параллельности прямой и плоскости, заключаем, что прямые a и l параллельны. В то же время плоскость α проходит через прямую b , параллельную прямой d , и пересекает плоскость β по прямой l . Отсюда, в силу признака параллельности прямой и плоскости, заключаем, что прямые b и l параллельны. Таким образом, мы получили, что на плоскости α через точку K проходят две прямые, а именно, прямые a и b , которые параллельны прямой l . Полученное противоречие с аксиомой о параллельных прямых аксиомой о параллельных прямых даёт возможность утверждать, что предположение о том, что плоскости α и β пересекаются, является неверным. Доказательство первого признака параллельности двух плоскостей завершено.

Второй признак параллельности двух плоскостей . Если две пересекающиеся прямые, лежащие в одной плоскости, параллельны другой плоскости, то такие плоскости параллельны.

Доказательство . Рассмотрим рисунок 3, на котором изображены плоскости α и β .

На этом рисунке также изображены прямые a и b , которые лежат в плоскости α и пересекаются в точке K. По условию каждая из прямых a и b параллельна плоскости β . Требуется доказать, что плоскости α и β параллельны.

Доказательство этого утверждения аналогично доказательству первого признака параллельности двух плоскостей, и мы его оставляем читателю в качестве полезного упражнения.

Взаимное расположение плоскостей

Параллельные плоскости

Получим условия параллельности или совпадения двух плоскостей и заданных общими уравнениями:

Необходимым и достаточным условием параллельности или совпадения плоскостей (4.23) является условие коллинеарности их нормалей Следовательно, если плоскости (4.23) параллельны или совпадают, то т.е. существует такое число что

Плоскости совпадают, если помимо этих условий справедливо Тогда первое уравнение в (4.23) имеет вид т.е. равносильно второму, поскольку

Таким образом, плоскости (4.23) параллельны тогда и только тогда, когда соответствующие коэффициенты при неизвестных в их уравнениях пропорциональны, т.е. существует такое число что но Плоскости (4.23) совпадают тогда и только тогда, когда все соответствующие коэффициенты в их уравнениях пропорциональны: и

Условия параллельности и совпадения плоскостей (4.23) можно записать в виде

Отсюда следует критерий параллельности или совпадения двух плоскостей (4.23):

Поверхности уровня линейного четырехчлена

Поверхностью уровня функции трех переменных называется геометрическое место точек координатного пространства в которых функция принимает постоянное значение, т.е.

Для линейного четырехчлена уравнение поверхности уровня имеет вид

При любом фиксированном значении постоянной уравнение (4.24) описывает плоскость. Рассмотрим поведение семейства поверхностей уровня, отличающихся значением постоянной. Поскольку коэффициенты и не изменяются, то у всех плоскостей (4.24) будет одна и та же нормаль Следовательно, поверхности уровня линейного четырехчлена D представляют собой семейство параллельных плоскостей (рис.4.19). Поскольку нормаль совпадает с градиентом (см. пункт 3 замечаний 4.2), а градиент направлен в сторону наискорейшего возрастания функции, то при увеличении постоянной поверхности уровня (4.24) переносятся параллельно в направлении нормали.

Пересекающиеся плоскости

Необходимым и достаточным условием пересечения двух плоскостей (4.22) является условие неколлинеарности их нормалей, или, что то же самое, условие непропорциональности коэффициентов при неизвестных:

При этом условии система уравнений

имеет бесконечно много решений, которые определяют прямую пересечения плоскостей, заданных уравнениями (4.23).

Угол между плоскостями

Угол между двумя плоскостями можно определить как угол между их нормальными векторами. По этому определению получаются не один угол, а два смежных угла, дополняющих друг друга до В элементарной геометрии из двух смежных углов, как правило, выбирается меньший, т.е. величина угла между двумя плоскостями удовлетворяет условию

Если — нормали к плоскостям и соответственно (рис.4.20,а), то величина угла между этими плоскостями вычисляется по формуле:

Необходимым и достаточным условием перпендикулярности плоскостей (4.23) является условие ортогональности их нормалей, т.е.

При пересечении двух плоскостей образуются четыре двугранных угла (рис.4.20). Величина двугранного угла удовлетворяет условию

получаем острый двугранный угол , образованный плоскостями (4.23), если 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAOQAAAAUCAMAAACqG2GmAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMA2+pwDT6+X6AdLK9Qy49/usJWAwAAA2ZJREFUWMPlV9mCpCAMlDPc8P9fuxwRBNF153GHF7ujhlSlkuBx/K7FzYNd/0cgrd/bpf/qgam6LFtoAbTH73QZ5RMJXMvZrKOk1JrDmo9u+PxfJLJ9zqXPIAXQxADAp7DYSbXLpD6KyiYlDg6S2Mkek3XZnbf0kxtHlZcTsT6l7X7kAXy+JVaLboRwmpZblOAesA1m4dsQ0t63Kc7Q2+ss2U+clyjUNXoWaOKbJ2Pcgy+Q1D3rEcG4ZbuAQbOdI6UXXimqkU1k9bfNzY1j/KH+xIVXTnLKNiWjSU6L/goytKB0onyRGWCGzQeQsmMQV1le8nd3AzKsUfJaHPxSIgGyb7HZ3x0kmafmsFp8FYP2ZPEkK0/cUrdveXqWQ6fIXNR6rYGdWp1fYJoGb1SbkUUN9xCEPPbg6011446GvPwqphxftUe+d+Sn6Oy+PbHH3jCCVWaqkQayq0GWEkWVXOYi96bYm9ac+RtIl6wQAjzuJcZ2stilqhYh+CtIupCtNWKfW7bbUC+sHVZAkGdLcVJrHWrXAEXhMviyvdU7sEi7eDSUFWW9uEtJQi9JE7wcScCSpPrggUlixnApi7B60SiHUR78Eo8f3SabRWDEboRhrDSd8imTnMi8SKVKawKj6zR7AZdzCn33B5Bn6yrNlee5PQSosTQhd/Gcq15TbguSX4pe8wRLx+ay9gqza9U6ELfIFVUeGIqthdpBKmitMZQsFK/wKleckmcTHSBxSh6ldUS/zK6bXEeja/LGXVXHxPIPWbgKm3OSu4TTuqvE2XtWzgxS+Ku2Cwv6FSRg1cTGVgeJlGbVypYjot5AhhMNNNIR5JmDrEiOIOAm1cni/ZiphsTpXHeCFIShd4x27ZorSFUFlWu7YekgW6nqmBCMI/wNZD4LiNYQ+BXkmUqHTB3BPjcdJD1LIlBd1ZFq0ZVrbS3kHNypeNXlSlkX9SNIWR/M66QTQSq0J3meV6R+7a4HV/lsrnpWesJioirIcw65CaObxwfSQKIi+/lHYP+JwQ4j3kfIciCU+3NSHv3wCjI/42B8PwxVcgd9/JTNhxsXtqcyA/AwmvcgQTKmxBLKD0ByHxksJxbG3/xsD/XGMxbjT78qwSai7puaVNY/fD6bLFO7YUEVP+q7n1jiuSux1MD+k+a3rj+cGyJvT1X7swAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> (рис.4.20,а), и тупой в противном случае: (рис.4.20,б). Другими словами, по формуле (4.26) находится тот двугранный угол, образованный плоскостями, в котором лежат точки, принадлежащие разноименным полупространствам, определяемым данными плоскостями. На рис.4.20 изображены пересекающиеся плоскости, положительные и отрицательные полупространства отмечены знаками + или – соответственно.

Пример 4.10. Найти величину того угла, образованного плоскостями и внутри которого лежит точка

Решение. По уравнениям плоскостей находим нормали а также величину угла между нормалями, используя (4.26):

Подставляя координаты точки в левые части уравнений плоскостей, выясняем, каким полупространствам принадлежит эта точка. Для плоскости имеем 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAN8AAAARBAMAAACvNWTbAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMAYP4P3segIFPuP7ONfi1w1Fgf5QAAAqVJREFUOMtjYKA7KAAjCDBGYkMA3wMEm/0BhmZhJFl0uXcYqu3AZOa2nQdgIk1hOwNQlDC6uS6AsblcZ15AM4FRHc60SkGTE02NQBPhcfMBUUlKjnChT0pzDFDUrHzAqgFjlxZw60DtgQlVwi3kmT0FLWjmMQShhchJg0qQ13KWI4R+r0O1j+HSBjYdGPtmA5cSRJoFJrQF4UMGF1Sd/NoMh0DG8zbARJjnMvAqA+l8JFXf0EP9dQPCh5cSGCYtQLGQMQ23hXw7GIJAMcB+FBbPjIoMjCDD8qsQ6eSbFUa6MHKGsewLGCYVoFhYaobbQqCPVMCqma9+hvB5tRg4dIF0aqw3PBxbYrag2VjojZRs+VQZUCzcxYbHQnaRcKjFXy9DohlooRqQTmOw3AASBoktNWCbjqqtZyvYBRAnsc5DsZDxAMRCA6wWMp6Gp1KR4yCSDWohmAXMEQkQZaA0wigIApDY5p4FsgnijJ8LIJKSgoISQJapAdhCqCkQC8E6JSD2JMHTS+thJAsfMLDpAykhkDcfgxIXqoWMKiAL9UBMDj8QaQi2UBDIyl21WgPoBA5tHBY2OcAsXL0dGqS6YPeBLeQDBaumAb82SrhcM+BSAkYiMzgilz7gf4AcpKmhkaoJYCdjCVLedIZFsBju3gXOKIqghAqylFsPlq5UGfh1UBKakgCjJjzJhDOwPkDNh6y4Ew2TIkOTArTMyYOkIl0GXqB6dj+GlxtgqnYwmDqjaAs1YNOFFytTXJwMiLaQNZjh0AVIIj0OKyYYTEA2LcmZBs8WpTmuqNmidE8SvKBNUlJCyxY8kzRhRS+jp9IUAZRcEX1MB5INL8OETONDQTaxdyDsYG5cjJa4F/ZhqWBYiKmFuCTA5vJ+Rgg1LiCzRuOnoDYEAJ1BjPvu16j0AAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> значит, точка лежит в положительном полупространстве, определяемом плоскостью Для плоскости имеем 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAMYAAAARBAMAAAB0js75AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAYQ6sm+EgQMJ68VMw0spZRHUAAAJySURBVDjLvZXNa9RAGMafzWa/SJBOD3oQlhSsiMqyUAUtKBVq/QDFr9iDCKs9KIJSxc+DotVCW3sI0kK9iEqVirisgngQS0EQW6EsiBcV6bpL17aav8HMTCbZGbrrzRySd57MvL/MM+9MgP9yfQjDHGDJLzcqbVk4qebSmlSFdXn99WAg7Nw05Eg91hwv5yQh9WJiKmhMd6sZU3OKcGnbMJDo034UhLLfPeZH/vfcxWSRRxf4YwQzT0XvM/1VP9ogpBmFkVjCZgt6N9IHhLTjsoi4ZJYRK3Ghiz8mrFQlyBAVjB5hVT9jXAv81IuYbUJ0AZmfQtoFmZFYtPSKxMhPGX/qM1JjjBEZFAavzyKTRbwZmYcB41ROYuAN9AWJ8QlGuT7j4zrulXHHz3OuAytYqnRWDNq99bAlMYDW3xLDm36pPmM46a9Hoo1Xxg2foX2heTUq7aGTkxlpR2HMsh7WcoyUIxgw23rZaI9BJf07bbUzDUk67CUhjwhhpWU+o/fzhAwSspIt62d6jx0KGS2EjBGyyotOI2DA3EJnMukx6EqMMu+20wLu5U5wRjOVzzoKI8qm0fo4ZJxgjNVedOvK9arYPfF9hdArow/3vNZaWg8V6EuSV9o3TMtedUKnem45rwYGhn511CJoUWVuAletwPxICcl5iREt4L7E0B28r7/miM0Jp/gmTnr7w0HiiW0XxfyO0mKrZbTb9nOJ8cC2x//NMPiKe19dxd4ckq7rBrX7rnNcqt2I93K+lqF5QlC7sbx7RGZE84s0l3E7ONNGR9QzLf5W2YPh1dXo6O6RmxfDc9QkVt1Rjiq8asRoafjz+Avab6T1GhuezwAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> значит, точка лежит также в положительном полупространстве, определяемом плоскостью Поскольку точка принадлежит одноименным полупространствам (положительным), то искомый угол — это угол смежный найденному углу

Пучки плоскостей

Собственным пучком плоскостей называется совокупность всех плоскостей, проходящих через фиксированную прямую ( ось пучка ).

Несобственным пучком плоскостей называется совокупность плоскостей, параллельных фиксированной плоскости (осью несобственного пучка плоскостей считается бесконечно удаленная прямая).

Любые две плоскости и определяют пучок плоскостей, содержащий заданные плоскости и Если плоскости и пересекаются, то прямая пересечения является осью собственного пучка (рис.4.21,а). Если плоскости и параллельны, то они определяют несобственный пучок параллельных плоскостей (рис.4.21,б).

Пусть заданы уравнения двух плоскостей (4.23):

Линейной комбинацией этих уравнений называется уравнение

где числа — коэффициенты линейной комбинации. Его можно записать в форме

Заметим, что линейная комбинация уравнений является уравнением первой степени для любых значений коэффициентов, кроме случая, когда все коэффициенты при неизвестных равны нулю, т.е. при одновременном выполнении условий

Эти значения параметров считаются недопустимыми.

Уравнение (4.27) называется уравнением пучка плоскостей, содержащего плоскости

При любых допустимых значениях параметров уравнение (4.27) задает плоскость, принадлежащую пучку, и наоборот, для любой плоскости пучка найдутся такие значения параметров что уравнение (4.27) будет задавать эту плоскость.

Доказательство утверждения аналогично доказательству свойства пучка прямых.

Пример 4.11. Составить уравнение плоскости, проходящей через прямую пересечения плоскостей и через точку

Решение. Искомая плоскость входит в пучок плоскостей, задаваемый уравнением (4.27)

Подставляя координаты точки получаем:

Возьмем, например, и подставим в уравнение пучка:

Итак, искомое уравнение получено.

Связки плоскостей

Собственной связкой плоскостей называется совокупность всех плоскостей, проходящих через фиксированную точку ( центр связки ).

Несобственной связкой плоскостей называется совокупность плоскостей, параллельных фиксированной прямой (центром несобственной связки плоскостей считается бесконечно удаленная точка).

Уравнение собственной связки плоскостей с центром имеет вид

где — произвольные параметры, одновременно не равные нулю.

Уравнение связки плоскостей (собственной (рис.4.22,а) или несобственной (рис.4.22,6)) можно получить в виде линейной комбинации уравнений трех плоскостей:

где — коэффициенты линейной комбинации. Заметим, что линейная комбинация уравнений является уравнением первой степени для любых значений коэффициентов, кроме случая, когда все коэффициенты при неизвестных равны нулю. Эти значения параметров считаются недопустимыми.

Уравнение (4.28) называется уравнением связки плоскостей, содержащей три плоскости

При любых допустимых значениях параметров уравнение (4.28) задает плоскость, принадлежащую связке, и наоборот, для любой плоскости связки найдутся такие значения параметров что уравнение (4.28) будет задавать эту плоскость.

Доказательство утверждения аналогично доказательству свойства пучка прямых.

Плоскость в трехмерном пространстве с примерами решения

Содержание:

Общее уравнение плоскости:

Пусть

которое называется уравнением плоскости, проходящей через точку и имеющей нормальный вектор . Его можно преобразовать к виду

(8.1.2)

где . Уравнение (8.1.2) называется общим уравнением плоскости.

Приведём уравнение плоскости (8.1.2) к специальному виду. Для этого перенесём свободный член в правую часть уравнения: .

Разделим обе части уравнения на —D получим:

(8.1.3)

Это и есть специальный вид уравнения плоскости или уравнение плоскости «в отрезках», где а, b, с — величины отрезков, которые отсекает плоскость на координатных осях.

Если плоскость проходит через точки , не лежащие на одной прямой, то её уравнение можно записать в виде

Разложив данный определитель по элементам первой строки, придём к уравнению вида (8.1.1).

Уравнения (8.1.1), (8.1.3), (8.1.4) можно привести к виду (8.1.2).

Пример:

Составить уравнение плоскости, проходящей через точки А(0, -2, -1), В(2, 4, -2) и С(3, 2, 0).

Решение:

Воспользуемся формулой (8.1.4), где

Подставив координаты точек A, В и С, получим: Разложим определитель по элементам первой строки:Вычислив три определителя второго порядка, получим уравнение: . Сократив на 5 и приведя подобные, найдем уравнение искомой плоскости АВС: .

Взаимное расположение двух плоскостей, прямой и плоскости

Углом между прямой и плоскостью будем называть угол, образованный прямой и ее проекцией на плоскость (рис. 8.1). Пусть прямая L и плоскость а заданы уравнениями:

Рассмотрим направляющий вектор прямой L и нормальный вектор плоскости (рис. 8.1). Если угол между ними острый, то его можно представить в виде разности, где — угол между прямой L й плоскостью . Тогда косинус угла между векторами и равен синусу угла между прямой L и плоскостью т.е.

.

Если угол между векторами тупой, то его можно представить в виде суммы . Поэтому в любом случае . Воспользовавшись формулой вычисления косинуса угла между векторами, получим формулу и для вычисления угла между прямой L и плоскостью:

Условие перпендикулярности прямой и плоскости. Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор прямой L и нормальный вектор плоскости коллинсарны, т.е. их координаты пропорциональны:

Условие параллельности прямой и плоскости. Прямая L и плоскость параллельны тогда и только тогда, когда векторы и

перпендикулярны, т.е. их скалярное произведение равно нулю: (8.2.3)

Пример:

Написать уравнение плоскости, проходящей через точку параллельно прямым и

Решение:

Так как , то уравнение плоскости будем искать в виде

Применяя условие параллельности (8.2.3) прямой и плоскости, получим систему линейных уравнений

где

Решив систему, найдем:

Подставив найденные значения коэффициентов А,В,С, полУ

чим искомое уравнение плоскости:

Угол между плоскостями. Рассмотрим две плоскости заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно,

что угол между нормальными векторами плоскостей равен одному из указанных смежных двугранных углов

или .Поэтому . Т.к. и

, то

Пример:

Определить угол между плоскостями

Решение:

Воспользовавшись формулой (8.2.4), получим:

Условие параллельности двух плоскостей. Две плоскости параллельны тогда и только тогда, когда их нормальные векторы и параллельны.

Векторы параллельны, если их координаты пропорциональны:

Две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны. Следовательно, их скалярное произведение равно нулю: , или (8.2.6)

Пример:

Составить уравнение плоскости, проходящей через точку M(-2, 1, 4) параллельно плоскости .

Решение:

Уравнение плоскости будем искать в виде . Из условия параллельности плоскостей следует, что: . Положив А=3, В=2, С=-7, получим уравнение плоскости

Так как , то координаты этой точки удовлетворяют уравнению. Подставив координаты точки, — 6+2 — 28+D=0, найдем D = 32. Тогда искомое уравнение плоскости будет иметь вид: 3х + 2у -7z + 32=0.

Пример:

Составить уравнение плоскости, проходящей через точкиперпендикулярно плоскости x+y+z=0.

Решение:

Так как , то используя уравнение плоскости, проходящей через заданную точку, будем иметь

Далее, так как , то подставив координаты точки в записанное уравнение, получим равенство -А-2С = 0 или А + 2С = 0.

Учитывая, что заданная плоскость перпендикулярна искомой, составим еще одно уравнение: A+B+С=0. Получим систему:

Выразив коэффициенты А и В через С: А = -2 С, В=С и подставив их в уравнение (8.2.7), -2С (х-1)+С (у-1)+С (z-l)=0, определяем искомое уравнение: —2х + у +z = 0 .

Понятие гиперплоскости

Взаимное расположение гиперплоскостей:

Рассмотрим n-мерное векторное пространство Пусть вектор этого пространства имеет координаты . По аналогии с пространством , естественно считать, что и в n-мерном векторном пространстве координаты произвольного вектора являются в то же время координатами некоторой точки М пространства . Тогда вектор х назовём радиус-вектором точки М Следовательно, каждому вектору можно поставить в соответствие точку и мы получим n-мерное точечное пространство. Точка О с координатами (О, 0, . 0) называется началом координат. Ей отвечает нулевой вектор. Геометрическое место точек называется координатной осью. Следовательно. в имеется n координатных осей:

Совокупность точек называется координатной гиперплоскостью .

Определение 8.3.1. Гиперплоскостью в п-мериом пространстве называется геометрическое место точек, координаты которых удовлетворяют линейному (векторному) уравнению:

где — произвольные действительные числа.

Заметим, что все не могут равняться нулю.

Рассмотрим две гиперплоскости:

Множество точек, принадлежащих как первой, так и второй гиперплоскости, называется их пересечением.

Теорема 8.3.1. Две гиперплоскости (8.3.2) и (8.3.3) не пересекаются в том и только в том случае, когда коэффициенты при соответствующих неизвестных пропорциональны, а свободные члены находятся в ином отношении:

Доказательство. Пусть гиперплоскости (8.3.2) и (8.3.3) не пересекаются. Следовательно, они не имеют общих точек и система

несовместна.

И наоборот, если система несовместна, то гиперплоскости (8.3.2) и (8.3.3) не пересекаются.

В силу теоремы Кронекера- Капелли система (8.3.5) несовместна, если ранг матрицы не равен рангу расширенной матрицы системы. А так как ранг расширенной матрицы системы не больше 2, то ранг матрицы системы должен ть равен 1. Эта возможность выражается условием (8.3.4).Поскольку для того, чтобы матрица имела ранг r = 1, нужно, чтобы строки были линейно зависимы, т.е. пропорциональны.

Ранг матрицы будет равен двум, если существует хотя бы один определитель второго порядка не равный нулю, т.е. если строки не пропорциональны. Теорема доказана.

Теорема 8.3.2. Для того, чтобы уравнения (8.3.2) и (8.3.3) определят одну и ту же гиперплоскость, необходимо и достаточно, чтобы выполнялись условия:

Доказательство. Достаточность. Пусть условия (8.3.6) выполнены. Обозначим отношения через t, т.е.

Тогда уравнение (8.3.2) можно получить из (8.3.3) умножением всех его членов на t. Поэтому уравнения равносильны и, следовательно, определяют одну и ту же гиперплоскость.

Необходимость. Пусть уравнения (8.3.2) и (8.3.3) определяют одну и ту же гиперплоскость. Система (8.3.5) совместна и, следовательно, ранг матрицы системы равен рангу расширенной матрицы. И т.к. эта система определяет одну гиперплоскость, то каждое из уравнений можно рассматривать как систему. Поэтому ранг этой системы равен 1 и все миноры второго порядка равны нулю, т.е.

Откуда следует, что

Определение 8.3.2. Две гиперплоскости называются параллель-ными, если они не пересекаются или совпадают.

Тогда из теорем 8.3.1 и 8.3.2 вытекает

Теорема 8.3.3. Две гиперплоскости (8.3.2) и (8.3.3) параллельны тогда и только тогда, когда соответствующие коэффициенты

пропорциональны, т.е.

Введем понятие прямой в n мерном пространстве по аналогии с параметрическими уравнениями прямой в трехмерном пространстве.

Определение 8.3.3. Прямой в называется множество точек (или векторов , удовлетворяющих уравнениям:

где , a t- переменный параметр, .

Определение 8.3.4. Отрезком в называется множество точек (или векторов ), удовлетворяющих уравнениям (8.3.7) при изменении параметра t в закрытом интервале . Точки называются концами отрезка.

Теорема 8.3.4. Всякая точка отрезка может быть выражена линейной комбинацией его концов:

Если в трехмерном пространстве провести плоскость, то она разделит его на две части, называемые полупространствами. Очевидно, и гиперплоскость разделит n-мерное пространство на полупространства, т.е. справедливо.

Определение 8.3.5. Полупространствами, порождаемыми гиперплоскостью называются два множества точек, удовлетворяющих соответственно условиям:

Гиперплоскость принадлежит обоим полупространствам, является их общей частью. Из (8.3.9) следует, что любое линейное неравенство геометрически определяет полупространство соответствующей размерности.

Определение 8.3.6. Множество точек удовлетворяющих условию или называется гиперсферой с центром в точке и радиусом r.

Системы m линейных неравенств с n неизвестными

В элементарной математике мы познакомились с линейными неравенствами одного или двух переменных:

Решением таких неравенств является промежуток числовой оси или полуплоскость.

Рассмотрим теперь линейное неравенство с n переменными:

в n-мерном пространстве.

Несколько неравенств, рассматриваемых совместно, образуют систему:

Определение 8.4.1. Областью решений системы т неравенств с п неизвестными называется множество точек пространства координаты которых удовлетворяют каждому из неравенств системы.

Из того факта, что областью решения линейного неравенства является полупространство, вытекает

Теорема 8.4.1. Область решений системы линейных неравенств есть пересечение некоторого числа полупространств.

Это пересечение является выпуклым множеством; оно ограничено гиперплоскостями

Так как линейные неравенства (8.4.1) независимы, то система (8.4.2) при m-n будет либо определённой, либо несовместной. И, следовательно, пересечение n гиперплоскостей в n-мерном пространстве либо даёт точку, либо не содержит ни одной точки.

Так как число систем по n уравнений с n неизвестными, которое может быть получено из (8.4.2) не может быть сколь угодно большим, и так как не всякая точка пересечения гиперплоскостей (является решением) принадлежит пересечению всех m гиперплоскостей, то число крайних точек, т.е. точек пересечения гиперплоскостей, принадлежащих данному множеству, ограничено. Следовательно, рассматриваемое множество будет многогранником, а крайние точки — его вершинами.

Итак, .областью решений совместной системы линейных нера-qchqtb является выпуклый многогранник, гранями которого служат некоторые части гиперплоскостей.

Пример:

Найти решение системы линейных неравенств

Решение:

Строим на плоскости граничные прямые:

соответствующие заданным неравенствам (рис. 8.3). Каждая из них делит плоскость на две полуплоскости, одна из которых является решением соответствующего неравенства. Для выбора полуплоскости, являющейся решением неравенства, подставляем начало координат О (0, 0) в каждое неравенство. Если получаем верное неравенство, то полуплоскость, содержащая начало координат, является решением неравенства, в противном случае — полуплоскость, не содержащая начало координат, является решением неравенства.

Стрелки указывают полуплоскости, являющиеся областями решений данных неравенств. Пересечение отмеченных полуплоскостей- заштрихованный четырехугольник АВСД на рис. 8.3- область решения данной системы.

Применение систем линейных неравенств в экономических исследованиях

Рассмотрим систему m линейных неравенств с n переменными:

Каждое неравенство системы определяет полупространство. Решением системы (8.5.1) является пересечение этих полупространств.

Системы линейных неравенств широко применяются во многих экономических задачах, в частности, при построении линейной модели производства. Производственный способ описывает производство продукции и расход ресурсов в единицу времени. Он математически задается вектором выпуска или вектором валовой продукции и вектором называемым вектором затрат, отвечающим выпуску x.

Если в производственной системе используется m видов производственных ресурсов, определены запасы ресурса i при использовании j-той технологии, то модель производственной системы математически приобретает вид системы линейных неравенств (8.5.1), в которой .

Пример:

Пусть известно содержание питательных веществ в единице каждого из имеющихся в хозяйстве кормов. Известна также цена каждого корма. Требуется определить все возможные рационы для кормления скота, которые удовлетворяли бы суточную потребность в каждом питательном веществе, а общая стоимость используемых кормов не превосходила бы A.

Решение:

Введем обозначения: m — число питательных веществ; n — число изменяющихся видов кормов; —количество единиц i -го питательного вещества в единице j -го корма; — дневная потребность в / -ом питательном веществе; —стоимость единицы j -го корма; —количество единиц j-го корма, используемого в рационе .

Задача рациона формулируется следующим образом: определить рацион , удовлетворяющий условиям:

стоимость которого ограничена величиной А: .

Например, пусть;

Тогда получаем систему:

Определим множество решений данной системы на плоскости . Вначале строим граничные прямые

(рис. 8.4) соответствующие данным неравенствам. Каждая из них делит плоскость на две полуплоскости, одна из которых является решением соответствующего неравенства. Для выбора полуплоски являющейся решением неравенства, подставляем в каждое неравенство.

Если получаем верное неравенство, то полуплоскость, содержащая начало координат, является решением неравенства, в противном случае — полуплоскость, не содержащая начало координат, является решением неравенства.

Стрелки на прямых указывают полуплоскости, являющиеся областями решений данных неравенств. Заштрихованный четырехугольник и определяет все возможные рационы для кормления скота, удовлетворяющие данным условиям.

Две пересекающиеся плоскости
Две параллельные плоскости
Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Функция одной переменной
  • Производная функции одной переменной
  • Приложения производной функции одной переменной
  • Исследование поведения функций
  • Ранг матрицы — определение и вычисление
  • Определители второго и третьего порядков и их свойства
  • Метод Гаусса — определение и вычисление
  • Прямая линия на плоскости и в пространстве

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://mathhelpplanet.com/static.php?p=vzaimnoe-raspolozhenie-ploskostyei

http://www.evkova.org/ploskost-v-trehmernom-prostranstve