Взаимное расположение прямых заданных уравнением прямой

Прямая на плоскости – необходимые сведения

Статья рассказывает о понятии прямой на плоскости. Рассмотрим основные термины и их обозначения. Поработаем со взаимным расположением прямой и точки и двух прямых на плоскости. Поговорим об аксиомах. В итоге обсудим методы и способы задания прямой на плоскости.

Прямая на плоскости – понятие

Для начала необходимо иметь четкое представление о том, что такое плоскость. Любую поверхность чего-либо можно отнести к плоскости, только от предметов она отличается своей безграничностью. Если представить, что плоскость – это стол, то в нашем случае он не будет иметь границ, а будет бесконечно огромен.

Если карандашом дотронуться до стола, останется отметина, которую можно называть «точкой». Таким образом, получим представление о точке на плоскости.

Рассмотрим понятие прямой линии на плоскости. Если провести прямую на листе, то она отобразится на нем с ограниченной длиной. Мы получили не всю прямую, а только ее часть, так как на самом деле она не имеет конца, как и плоскость. Поэтому изображение прямых и плоскостей в тетради формальное.

Взаимное расположение прямой и точки

На каждой прямой и в каждой плоскости могут быть отмечены точки.

Точки обозначают как большими, так и маленькими латинскими буквами. Например, А и D или a и d .

Для точки и прямой известны только два варианта расположения: точка на прямой, иначе говоря, что прямая проходит через нее, или точка не на прямой, то есть прямая не проходит через нее.

Чтобы обозначить, принадлежит точка плоскости или точка прямой, используют знак « ∈ ». Если в условии дано, что точка A лежит на прямой a , тогда это имеет такую форму записи A ∈ a . В случае, когда точка А не принадлежит, тогда другая запись A ∉ a .

Через любые две точки, находящиеся в любых плоскостях, существует единственная прямая, которая проходит через них.

Данное высказывание считается акисомой, поэтому не требует доказательств. Если рассмотреть это самостоятельно, видно, что при существующих двух точках имеется только один вариант их соединения. Если имеем две заданные точки А и В , то прямую, проходящую через них можно назвать данными буквами, например, прямая А В . Рассмотрим рисунок, приведенный ниже.

Прямая, расположенная на плоскости, имеет большое количество точек. Отсюда исходит аксиома:

Если две точки прямой лежат в плоскости, то и все остальные точки данной прямой принадлежат плоскости.

Множество точек, находящееся между двумя заданными, называют отрезком прямой. Он имеет начало и конец. Введено обозначение двумя буквами.

Если дано, что точки А и Р – концы отрезка, значит, его обозначение примет вид Р А или А Р . Так как обозначения отрезка и прямой совпадают, рекомендовано дописывать или договаривать слова «отрезок», «прямая».

Краткая запись принадлежности включает в себя использование знаков ∈ и ∉ . Для того, чтобы зафиксировать расположение отрезка относительно заданной прямой, применяют ⊂ . Если в условии дано, что отрезок А Р принадлежит прямой b , значит, и запись будет выглядеть следующим образом: А Р ⊂ b .

Случай принадлежности одновременно трех точек одной прямой имеет место быть. Это верно, когда одна точка лежит между двумя другими. Данное утверждение принято считать аксиомой. Если даны точки А , В , С , которые принадлежат одной прямой, а точка В лежит между А и С , следует, что все заданные точки лежат на одной прямой, так как лежат по обе стороны относительно точки B .

Точка делит прямую на две части, называемые лучами. Имеем аксиому:

Любая точка O , находящаяся на прямой, делит ее на два луча, причем две любые точки одного луча лежат по одну сторону луча относительно точки O , а другие – по другую сторону луча.

Взаимное расположение прямых на плоскости

Расположение прямых на плоскости может принимать вид двух состояний.

Две прямые на плоскости могут совпадать.

Такая возможность появляется, когда прямые имеют общие точки. Исходя из аксиомы, написанной выше, имеем, что через две точки проходит прямая и только одна. Значит, что при прохождении 2 прямых через заданные 2 точки, они совпадают.

Две прямые на плоскости могут пересекаться.

Данный случай показывает, что имеется одна общая точка, которую называют пересечением прямых. Вводится обозначение пересечение знаком ∩ . Если имеется форма записи a ∩ b = M , то отсюда следует, что заданные прямые a и b пересекаются в точке M .

При пересечении прямых имеем дело образовавшимся углом. Отдельному рассмотрению подвергается раздел пересечения прямых на плоскости с образованием угла в 90 градусов, то есть прямого угла. Тогда прямые называют перпендикулярными. Форма записи двух перпендикулярных прямых такая: a ⊥ b , а это значит, что прямая a перпендикулярна прямой b .

Две прямые на плоскости могут быть параллельны.

Только в том случае, если две заданные прямые не имеют общих пересечений, а, значит, и точек, они параллельны. Используется обозначение, которое можно записать при заданной параллельности прямых a и b : a ∥ b .

Прямая на плоскости рассматривается вместе с векторами. Особое значение придается нулевым векторам, которые лежат на данной прямой или на любой из параллельных прямых, имеют название направляющие векторы прямой. Рассмотрим рисунок, расположенный ниже.

Ненулевые векторы, расположенные на прямых, перпендикулярных данной, иначе называют нормальными векторами прямой. Подробно имеется описание в статье нормальный вектор прямой на плоскости. Рассмотрим рисунок ниже.

Если на плоскости даны 3 линии, их расположение может быть самое разное. Есть несколько вариантов их расположения: пересечение всех, параллельность или наличие разных точек пересечения. На рисунке показано перпендикулярное пересечение двух прямых относительно одной.

Для этого приводим необходимы факторы, доказывающие их взаимное расположение:

  • если две прямые параллельны третьей, тогда они все параллельны;
  • если две прямые перпендикулярны третьей, тогда эти две прямые параллельны;
  • если на плоскости прямая пересекла одну параллельную прямую, тогда пересечет и другую.

Рассмотрим это на рисунках.

Способы задания прямой на плоскости

Прямая на плоскости может быть задана несколькими способами. Все зависит от условия задачи и на чем будет основано ее решение. Эти знания способны помочь для практического расположения прямых.

Прямая задается при помощи указанных двух точек, расположенных в плоскости.

Из рассмотренной аксиомы следует, что через две точки можно провести прямую и притом только одну единственную. Когда прямоугольная система координат указывает координаты двух несовпадающих точек, тогда можно зафиксировать уравнение прямой, проходящей через две заданные точки. Рассмотрим рисунок, где имеем прямую, проходящую через две точки.

Прямая может быть задана через точку и прямую, которой она параллельна.

Данный способ имеет место на существование, так как через точку можно провести прямую, параллельную заданной, причем, только одну. Доказательство известно еще из школьного курса по геометрии.

Если прямая задана относительно декартовой системы координат, тогда возможно составление уравнения прямой, проходящей через заданную точку параллельно заданной прямой. Рассмотрим принцип задания прямой на плоскости.

Прямая задается через указанную точку и направляющий вектор.

Когда прямая задается в прямоугольной системе координат, есть возможность составления канонического и параметрического уравнений на плоскости. Рассмотрим на рисунке расположение прямой при наличии направляющего вектора.

Четвертым пунктом задания прямой имеет смысл, когда указана точка, через которую ее следует начертить, и прямая, перпендикулярная ей. Из аксиомы имеем:

Через заданную точку, расположенную на плоскости, пройдет только одна прямая, перпендикулярная заданной.

И последний пункт, относящийся к заданию прямой на плоскости, это при указанной точке, через которую проходит прямая, и при наличии нормального вектора прямой. При известных координатах точки, которая расположена на заданной прямой, и координатах нормального вектора есть возможность записывания общего уравнения прямой.

Прямая линия на плоскости и в пространстве с примерами решения

Содержание:

Общее уравнение прямой:

Пусть на плоскости дана декартова система координат. Движение точки с произвольными координатами х и у по этой плоскости порождает линию.

Определение: Любое соотношение

Определение: Порядок линии определяется по высшему показателю степени переменных х и у или по сумме показателей степени в произведении этих величин.

Пример:

а) 2х + Зу-5 = 0 — линия первого порядка; точка A(l; 1) удовлетворяет этому соотношению, а точка, например, В(1; 0) — ему не удовлетворяет;

б)

в) — линии второго порядка.

Рассмотрим другое определение линии:

Определение: Геометрическое место точек, координаты которых удовлетворяют уравнению F(x; у)=0, называется линией, а само уравнение F(x; у) = 0 — уравнением линии.

Определение: Общим уравнением прямой называется уравнение первого порядка вида

Рассмотрим частные случаи этого уравнения:

а) С = 0; — прямая проходит начало системы координат (Рис. 20):

Рис. 20. Прямая, проходящая через начало координат.

б) 5 = 0; Ах+С=0 — прямая проходит параллельно оси ординат Оу (Рис. 21):

Рис. 21. Прямая, проходящая параллельно оси ординат Оу.

в) А = 0; Ву+С=0 — прямая проходит параллельно оси абсцисс Ох (Рис. 22):

Рис. 22. Прямая, проходящая параллельно оси абсцисс Ох.

Виды уравнений прямой

1. Уравнение прямой с угловым коэффициентом. Пусть дано общее уравнение прямой в котором коэффициент Разрешим общее уравнение прямой относительно переменной Обозначим через тогда уравнение примет вид которое называется уравнением прямой с угловым коэффициентом. Выясним геометрический смысл параметров При х = 0, у = b, т.е. параметр b показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета. При т.е. прямая отсекает на оси абсцисс отрезок к (Рис. 23, для определенности принято, что ):

Рис. 23. Отрезки, отсекаемые прямой на координатных осях.

Из рисунка видно, что т.е. угловой коэффициент k определяет тангенс угла наклона прямой к положительному направлению оси абсцисс Ох.

2. Уравнение прямой в отрезках.

Пусть в общем уравнении прямой параметр Выполним следующие преобразования

Обозначим через тогда последнее равенство перепишется в виде . которое называется уравнением прямой в отрезках. Выясним геометрический смысл величин m и n (Рис. 24). При х=0, у=n, т.е. параметр n показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета.

Рис. 24. Отрезки, отсекаемые прямой на координатных осях.

При у=о, х=m, т.е. прямая отсекает на оси абсцисс отрезок m. Следовательно, прямая проходит через 2 точки:

3. Уравнение прямой, проходящей через две заданные точки. Пусть дано общее уравнение прямой Ах + Ву + С = 0, которая проходит через две известные точки Так как точки лежат на прямой, то их координаты удовлетворяют общему уравнению прямой, т.е. выполняются равенства Вычтем первое из этих равенств из общего уравнения прямой и из второго равенства:

Пусть тогда полученные равенства можно преобразовать к виду Отсюда находим, что или Полученное уравнение называется уравнением прямой, проходящей через две заданные точки и

4. Уравнение прямой, проходящей через заданную точку параллельно заданному вектору (каноническое уравнение прямой). Пусть прямая проходит через заданную точку параллельно вектору

Определение: Вектор называется направляющим вектором прямой. Возьмем на прямой произвольную точку и создадим вектор (Рис. 25):

Рис. 25. Прямая, проходящая через данную точку параллельно направляющему вектору.

В силу того, что вектора коллинеарны, то воспользуемся первым условием коллинеарности: отношения соответствующих проекций равны между собой

Определение: Полученное уравнение называется либо уравнением, проходящим через заданную точку параллельно направляющему вектору, либо каноническим уравнением прямой.

5. Параметрическое уравнение прямой. Если каждую дробь в каноническом уравнении прямой приравнять некоторому параметру t, то получим параметрическое уравнение прямой

Основные задачи о прямой на плоскости

1. Координаты точки пересечения двух прямых. Пусть две прямые заданы общими уравнениями Требуется найти координаты точки пересечения этих прямых. Для того чтобы вычислить координаты точки пересечения М(х; у), необходимо решить вышеприведенную систему линейных алгебраических уравнений, так как координаты точки М(х; у) должны одновременно удовлетворять уравнениям прямых

2. Угол между двумя пересекающимися прямыми. Пусть даны две пересекающиеся прямые, заданные уравнениями с угловыми коэффициентами

Требуется найти угол между этими прямыми (Рис. 26):

Рис. 26. Угол между двумя прямыми.

Из рисунка видно, что Вычислим

Наименьший угол между пересекающимися прямыми определим формулой Из полученной формулы видно:

  • а) если прямые параллельны или совпадаютто Отсюда следует условие параллельности прямых: угловые коэффициенты прямых равны между собой
  • б) если прямые перпендикулярныто не существует.

Отсюда следует условие перпендикулярности прямых: угловые коэффициенты прямых связаны между собой соотношением

Пример:

Определить угол между прямыми

Решение:

В силу того, что что прямые параллельны, следовательно,

Пример:

Выяснить взаимное расположение прямых

Решение:

Так как угловые коэффициенты и связаны между собой соотношением то прямые взаимно перпендикулярны.

3. Расстояние от точки до прямой. Расстояние от точки до прямой определятся вдоль перпендикуляра, опущенного из точки на прямую Если прямая задана общим уравнением, то расстояние от точки до прямой определяется формулой:

Если прямая задана уравнением прямой с угловым коэффициентом, то расстояние от точки до прямой определяется формулой:

Прямая линия на плоскости и в пространстве. Системы координат на плоскости

Рассмотрим произвольную прямую. Выберем на этой прямой начальную точку, обозначаемую буквой О, определим положительное направление, выберем некоторый отрезок в качестве линейной единицы, благодаря чему прямая станет осью. После этого условимся называть координатой любой точки М на этой оси величину отрезка . Точку О будем называть началом координат; ее собственная координата равна нулю. Так вводятся координаты на прямой.

Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке, т.е. указано, какая из них считается первой, а какая — второй. Точка пересечения осей называется началом координат и обозначается через О, а сами оси — координатными осями, причем первую из них называют также осью абсцисс и обозначают через Ох, а вторую — осью ординат, обозначаемую Оу.

Пусть М- произвольная точка плоскости. Спроектируем точку M на координатные оси, т.е., проведем через М перпендикуляры к осям Ох и Оу; основания этих перпендикуляров обозначим соответственно .

Координатами точки М в заданной системе называются числа , обозначающие величину отрезка оси абсцисс и величину отрезка оси ординат, где х — первая координата, а у- вторая координата точки М (рис.7.1). Символически это записывается в виде М(х, у).

Если задана декартова прямоугольная система координат, то каждая точка М плоскости в этой системе имеет одну вполне определенную пару координат х, у — М(х, у). И обратно, для любых х и у на плоскости найдется одна вполне определенная точка с абсциссой х и ординатой у.

На рис. 7.2 положение точки Р полностью определяется ее координатами (2;3).

Две координатные оси разделяют всю плоскость на четыре части, называемыми координатными плоскостями, определяемыми соответственно:

  • первая координатная четверть: х>0, у>0;
  • вторая координатная четверть: х0, у>0;
  • третья координатная четверть: х0, у0;
  • четвертая координатная четверть: х>0, у0.

Декартова прямоугольная система координат является наиболее употребительной. Однако, в отдельных случаях могут оказаться более удобными или косоугольная декартова или полярная системы координат.

Косоугольная система координат от прямоугольной декартовой системы координат отличается только произвольным углом между осями координат.

Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча OA, называемого полярной осью, масштаба для измерения длин и направления- вращения в плоскости, считаемого положительным (рис. 7.3).

Каждая точка М в полярной системе координат задается парой координат .

Декартова прямоугольная система координат связана с полярной системой формулами:

Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точкамии . Числа могут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 7.4 все числа выбраны положительными. Проведем через точку горизонтальную прямую, а через точку — вертикальную. Пусть R -точка их пересечения. Тогда по теореме Пифагора

или (7.1.1)

Это и есть формула для вычисления расстояния между двумя точками.

Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки . Например, если точка расположена ниже точки и справа от нес, как на рис. 7.5, то отрезок можно считать равныму\ .

Расстояние между точками, вычисляемое по формуле (7.1.1), от этого не изменится, так как . Заметим, что, так как величина в этом случае отрицательна, то разность больше, чем

Если обозначить через угол, образованный положительным направлением оси абсцисс и отрезком , то формулы

выражают проекции произвольного отрезка на координатные оси через его длину и полярный угол. Из формул (7.1.2) получаем формулы:

позволяющие определить полярный угол отрезка по координатам его конца и начала. Кроме того, если u — произвольная ось, а — угол наклона отрезка к этой оси, то проекция отрезка на ось равна его длине, умноженной на косинус угла наклона к этой оси:

.

Пусть на плоскости даны две произвольные точки, из которых одна считается первой, другая — второй. Обозначим их в заданном порядке через . Проведем через данные точки ось u. Пусть М- еще одна точка оси и, расположенная на ней как угодно, но не совпадает с точкой .

Определение 7.1.1. Число определяемое равенством где — величины направленных отрезков оси u, называется отношением, в котором точка М делит направленный отрезок .

Число не зависит от направления оси и от масштаба, т.к. при изменении этих параметров будут одновременно меняться величины . Кроме того, будет положительно, если Мнаходится между точками если же М вне отрезка , то -отрицательное.

Задача о делении отрезка в данном отношении формулируется следующим образом:

Считая известными координаты двух точек и и отношение в котором некоторая неизвестная точка М делит отрезок , найти координаты точки М.

Решение задачи определяется следующей теоремой.

Теорема 7.1.1. Если точка М(х, у) делит направленный отрезок в отношении то координаты этой точки выражаются формулами:

Доказательство:

Спроектируем точки на ось Ох и обозначим их проекции соответственно через (рис. 7.6). На основании теоремы о пропорциональности отрезков прямых, заключенных между параллельными прямыми (Если две прямые пересечь тремя параллельными прямыми, то отношение двух отрезков, получившихся на одной прямой, равно отношению двух соответствующих отрезков другой прямой), имеем:

Подставив в (7.1.4) величины отрезков и

, получим

Разрешая это уравнение относительно х, находим:

Вторая формула (7.1.3) получается аналогично.

Если — две произвольные точки и М(х,y) —

середина отрезка , то . Эти формулы

получаются из (7.1.3) при .

Основная теорема о прямой линии на плоскости

Предположим, что в данной плоскости задана прямоугольная система координат и некоторая прямая l.

Всякий ненулевой вектор, коллинеарный данной прямой, называется её направляющим вектором. Всякие два направляющих вектора одной и той же прямой коллинеарны между собой, т.е.

, .

Для всех направляющих векторов данной прямой, не параллельной оси ординат, отношение ординаты вектора к его абсциссе имеет одно и то же постоянное значение k, называемое угловым коэффициентом данной прямой.

Действительно, если — два направляющих вектора данной прямой /, то векторы коллинеарны, т.е.

их координаты пропорциональны: а значит

Угловой коэффициент прямой можно определить и по-другому: как тангенс угла, образованного положительным направлением оси абсцисс и заданной прямой.

Справедлива следующая теорема.

Теорема 7.3,1. Всякая прямая на плоскости определяется уравнением первой степени с двумя переменными х и у; и обратно, всякое уравнение первой степени с двумя переменными х и у определяет некоторую прямую на плоскости.

Доказательство: Пусть В = (О,b>- точка пересечения прямой L с осью у, а Р = (х,у) — любая другая точка на этой прямой. Проведем через точку В прямую, параллельную оси х, а через точку Р — прямую, параллельную оси у; проведем также прямую х = 1. Пусть k -угловой коэффициент прямой L (см. рис. 7.7). Случай к =0 не исключается.

Так как треугольники BSQ и BRP подобны, то или после упрощения

Следовательно, если точка Р принадлежит прямой L, то ее координаты удовлетворяют уравнению (7.2.1). Обратно, нетрудно показать, что если х и у связаны уравнением (7.2.1), то точка Р принадлежит прямой L, проходящей через точку (0;b) и имеющей угловой коэффициент k.

Таким образом, уравнение любой прямой можно записать в виде:

(не вертикальная прямая) , (7.2.2), х = а (вертикальная прямая) (7.2.3).

В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени ио х и у можно привести к виду (7.2.2) либо (7.2.3).

Докажем обратное утверждение. Предположим, что задано произвольное уравнение первой степени:

Если , мы можем записать уравнение (7.2.4) в виде

т.е. в виде (7.2.2). При В = 0 уравнение (7.2.3) сводится к уравнению

или , т.е. к уравнению вида (7.2.3).

Таким образом, любая прямая описывается уравнением первой степени с неизвестными х и у, и обратно, каждое уравнение первой степени с неизвестными х и v определяет некоторую прямую.

Уравнение (7.2.4) называется общим уравнением прямой. Так

как , то вектор является направляющим вектором прямой (7.2.4). Вектор перпендикулярен прямой (7.2.4) и называется нормальным вектором. Возможны частные случаи:

1. или у =b, где , -это уравнсние прямой, параллельной оси Ох.

2. или х = а, где , — это уравнение прямой, параллельной оси Оу.

3. — это уравнение прямой, проходящей через начало координат.

4. А=0; С=0; Ву-0 или у = 0 — это уравнение оси абсцисс Ох.

5. В=0;С=0; Ах=0 или х = 0 — это уравнение оси ординат Оу.

Различные виды уравнений прямой на плоскости

Положение прямой на плоскости относительно системы координат можно задать различными способами. Например, прямая однозначно определяется: двумя различными точками; точкой и направляющим вектором; отрезками, отсекаемыми прямой на осях координат и др. Однако, обязательно, должна быть точка, лежащая на этой прямой.

Пусть в уравнении (7.2.4) ни один из коэффициентов А, В, С не равен нулю. Перенесем свободные члены вправо и разделим на (-С). Получим уравнение прямой в отрезках:

где -длины отрезков, отсекаемых прямой l на осях координат, взятые с соответствующими знаками (в зависимости от того, положительные или отрицательные полуоси координат пересекает прямая l).

Рассмотрим прямую l на плоскости и выберем на этой прямой какие-нибудь точки . Тогда вектор является направляющим вектором этой прямой l.

Геометрическое место концов всевозможных векторов вида где пробегает все вещественные числовые значения, определяет прямую l. Уравнение (7.3.2) называется уравнением прямой в векторной форме (векторным уравнением прямой). Записав векторное уравнение (7.3.2) в координатной форме и воспользовавшись определением равенства векторов, получим параметрические уравнения прямой:

где — координаты направляющего вектора.

Система (7.3.3) равносильна уравнению

называемым каноническим уравнением прямой на плоскости. Из системы (7.3.3) можно получить уравнение

которое называется уравнением прямой, проходящей через две данные точки

Если абсциссы точек одинаковы, т. е. то прямая параллельна оси ординат и ее уравнение имеет вид: х=а.

Если ординаты точек одинаковы, т. е. , то прямая параллельна оси абсцисс и ее уравнение имеет вид: у=b. Уравнение (7.3.5) можно преобразовать к виду:

угловой коэффициент прямой.

Уравнение (7.3.6) называется уравнением прямой, проходящей через точку и имеющей угловой коэффициент k.

Пример:

Составить уравнение прямой, проходящей через две точки

Решение:

I способ. Воспользуемся уравнением (7.3.5). Подставив известные координаты точек , получим искомое уравнение прямой:

II способ. Зная координаты точек по формуле (7.3.7) можно найти угловой коэффициент искомой прямой:

Тогда, воспользовавшись уравнением (7.3.6), найдём искомое уравнение прямой: .

Заметим, что составленное уравнение можно записать как уравнение прямой в отрезках, разделив все члены уравнения

.

Взаимное расположение двух прямых на плоскости

Пусть на плоскости заданы две прямые общими уравнениями . Угол между ними можно вычислить как угол между направляющими векторами

этих прямых:

Если прямые параллельны, то их нормальные векторы коллинеарны, а это значит, что их соответствующих координаты пропорциональны:

И обратно, если координаты при неизвестных х и у пропорциональны, то прямые параллельны. Следовательно, можно сформулировать следующую теорему:

Теорема 7.4.1. Две прямые параллельны тогда и только тогда, когда в их уравнениях коэффициенты при соответствующих переменных х и у пропорциональны.

Например, прямые параллельны,

т. к..

Если прямые перпендикулярны , то их нормальные векторы тоже перпендикулярны, а это значит, что скалярное произведение этих векторов равно нулю: , или в координатной форме

Справедливо и обратное утверждение: если скалярное произведение нормальных векторов равно нулю, то прямые /, и /2 перпендикулярны.

Теорема 7.4.2. Две прямые перпендикулярны тогда и только тогда, когда коэффициенты при переменных х и у удовлетворяют равенству .

Например, прямые перпендикулярны, так как

.

Если прямые заданы уравнениями вида и , то угол между ними находится по формуле:

Для того чтобы прямые были параллельны, необходимо и достаточно, чтобы выполнялось равенство

(7.4.5)

а для их перпендикулярности необходимо и достаточно, чтобы

(7.4.6)

Пример:

Найти проекцию точки Р (2, 3) на прямую, проходящую через точки А (4, 3) и В (6, 5).

Решение:

Проекция точки Р на прямую АВ — это точка пересечения перпендикуляра, проведенного к этой прямой из точки Р.

Вначале составим уравнение прямой АВ. Воспользовавшись уравнением (7.3.5), последовательно получаем:

Для того, чтобы составить уравнение перпендикуляра, проведенного из точки Р на прямую АВ, воспользуемся уравнением (7.3.6). Угловой коэффициент k определим из условия перпендикулярности двух прямых, т. е. из формулы (7.4.6). Поскольку ,то из равенства находим угловой коэффициент перпендикуляра . Подставляя найденное значение углового коэффициента и координаты точки Р (2, 3) в уравнение (7.3.6), получаем:

.

Решая систему уравнений, составленную из уравнений прямой АВ и перпендикуляра

найдём координаты проекции точки Р на прямую АВ: х=3 у=2, т.е.

Пример:

Издержки на производство шести автомобилей составляют 1000 млн. ден. ед., а на производство двадцати автомобилей- 15000 млн. ден. ед. Определить издержки на производство 22 автомобилей при условии, что функция К(х) издержек производства линейна, т.е. имеет вид у = ах + b .

Решение:

Обозначим через х количество автомобилей, а через y- издержки производства. Тогда из условия задачи следует, что заданы координаты двух точек- А(6; 1000) и В(20; 15000), принадлежащих линейной функции у = ах +b. Воспользовавшись уравнением (7.3.6 ), найдём искомое уравнение:

Подставив в найденную функцию х = 22, определим издержки на производство 22 автомобилей:

(млн. дсн. ед)

Пример:

Фирма продаёт свои изделия по 10 ден. ед. за единицу. Затраты на изготовление одного изделия составляют 6 ден. ед. Непроизводственные расходы фирмы равны 300 ден. ед. в год. Определить годовой выпуск продукции, необходимой для того, чтобы фирма работала с прибылью.

Решение:

Обозначим через х объём произведенной продукции. Тогда доход фирмы равен D = 10x. Затраты на производство определяются уравнением: . Найдём точку безубыточности. т.е. значение x, при котором доход фирмы равен затратам: D=K, т.е. 10x = 6x + 300. Решив это уравнение, получим значение объёма производства, при котором фирма работает без убытка: х=75. Следовательно, если объём производства то фирма будет работать с прибылью.

Прямая линия в пространстве

Системы координат в пространстве

В трехмерном пространстве система координат определяется тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось единицей измерения длин, можно задать тремя упорядоченными числами (называемыми координатами) положение точки в пространстве. Например, точка Р задается упорядоченной тройкой чисел Р( 1,2,3).

Пусть задано пространство. Важнейшим понятием пространственной аналитической геометрии является понятие уравнения поверхности. Всякая же линия рассматривается как пересечение двух поверхностей. Мы остановимся на изучении поверхности первого порядка — плоскости и прямой линии.

Положение прямой в пространстве вполне определяется заданием какой-либо сё фиксированной точки и вектора параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая L проходит через точку , лежащую на прямой, параллельно вектору (см. рис. 7.9).

Рассмотрим произвольную точку M(x,y,z) на этой прямой. Из рисунка видно, что вектор параллельный (коллинеарный) вектору . Поскольку векторы коллинеарны, то найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки М на прямой.

Уравнение (7.5.1) называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки M, лежащей на прямой. Это уравнение можно записать в виде: (см. рис. 7.9). Запишем это уравнение в координатной форме. Подставив координаты векторов в уравнение (7.5.1) и воспользовавшись определением алгебраических операций над векторами и равенством векторов, получим уравнения:

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты х, у и z и точка М перемещается по прямой.

Разрешив уравнения (7.5.2) относительно t

и приравняв найденные значенияt получим канонические уравнения прямой:

Если прямая L в пространстве задается двумя своими точками ,то вектор

можно взять в качестве направляющего вектора и тогда уравнения (7.5.3) преобразуются в уравнения

где . (7.5.4)- это уравнение прямой, проходящей через две заданные точки

Пример:

Составить параметрические уравнения прямой, проходящей через точку, перпендикулярно плоскости Oxz.

Решение:

В качестве направляющего вектора искомой прямой можно взять единичный вектор оси Оу: • Подставив значения координат точки и значения координат направляющего вектора в уравнения (7.5.2), получаем: .

Пример:

Записать уравнения прямой в параметрическом виде.

Обозначим. Тогда ,

, откуда следует, что .

Замечание. Пусть прямая перпендикулярна одной из координатных осей, например, оси Ох. Тогда направляющий вектор

прямой перпендикулярный оси Ох, имеет координаты (о; n; р) и параметрические уравнения прямой примут вид

Исключая из уравнений параметр t, получим уравнения прямой в виде

Однако и в этом случае формально можно записывать канонические уравнения прямой в виде . Таким образом, если в знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, канонические уравнения

определяют прямую перпендикулярную осям О х и О у или параллельную оси О z.

Пример:

Составить канонические и параметрические уравнения прямой, проходящей через точку параллельно вектору

Решение:

Подставив координаты точки , и вектора в (7.5.2) и (7.5.3), находим искомые канонические уравнения:

.и параметрические уравнения:

Пример:

Составить канонические уравнения прямой, проходящей через точку М(2, -1,4) параллельно

а) прямой ;

Решение:

а) Поскольку направляющий вектор заданной прямой

является направляющим вектором искомой прямой, то

подставив координаты точки М(2; -1; 4) и вектора в (7.5.3) получим уравнение искомой прямой:

б) Поскольку единичный вектор оси О х: будет направляющим вектором искомой прямой, то подставив в уравнение

(7.5.3) координаты точки М(2; -1; 4 ) и вектора , получаем:

в) В качестве направляющего вектора искомой прямой можно взять единичный вектор оси Оу: . В соответствии с уравнением (7.5.3), получаем или .

г) Единичный вектор оси Oz : будет направляющим вектором искомой прямой. В соответствии с уравнением (7.5.3), получаем

Пример:

Составить уравнение прямой, проходящей через две заданные точки

Решение:

Подставив координаты точек в уравнение

(7.5.4), получим:

Взаимное расположение двух прямых в пространстве

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведенными через произвольную точку параллельно данным. Пусть в пространстве заданы две прямые:

Очевидно, что за угол между прямыми можно принять угол между их направляющими векторами и

, косинус которого находится по формуле:

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов:

Две прямые параллельны тогда и только тогда, когда пропорциональны соответствующие координаты направляющих векторов:

т.е. параллельна тогда и только тогда, когда параллелен

.

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих координат направляющих векторов равна нулю:

Пример:

Найти угол между прямыми и

Решение:

Воспользуемся формулой (7.6.1), в которую подставим координаты направляющих векторов и

. Тогда , откуда или.

Вычисление уравнения прямой

Пусть PQ — некоторая прямая на плоскости Оху (рис. 22). Через произвольную точку М0 (х0, у0) этой прямой (условно называемую «начальной точкой») проведем прямую М0х\ параллельную оси Ох и имеющую с ней одинаковое направление. Тогда наименьший неотрицательный угол , образованный полупрямой M0Q, лежащей выше оси М0х’ или совпадающей с ней, называется углом между данной прямой и осью Ох.

Очевидно, этот угол не зависит от выбора точки М0. Если прямая PQ пересекает ось Ох в некоторой точке А (а, 0), то ф есть обычный угол между направленными прямыми. Если PQ || Ох, то, очевидно, Ф = 0. Начальная точка М0 прямой и угол ф («направление прямой») однозначно определяют положение этой прямой на плоскости.

1) Пусть сначала . Тогда прямая PQ пересекает ось Оу в некоторой точке В (0, b), которую можно принять за начальную.

Ордината у = NM текущей точки М (х, у) прямой (рис. 23) состоит из двух частей:

из них первая постоянна, а вторая переменна. Введя угловой коэффициент tg ф = k9 из рис. 23 будем иметь

Нетрудно проверить, что формула (3) остается справедливой также и при х

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Простейшие задачи с прямой на плоскости.
Взаимное расположение прямых. Угол между прямыми

Продолжаем рассматривать эти бесконечные-бесконечные прямые. На уроке Уравнение прямой на плоскости мы познакомились с основными видами уравнений, направляющим вектором прямой и её вектором нормали. Данная статья является логическим продолжением темы, и в ней будут разобраны следующие типовые задачи, для опытных путешественников сразу кликабельное оглавление:

О-о-о-о-о… ну и жесть, словно вам сам себе приговор зачитал =) Впрочем, потом релаксация поможет, тем более, сегодня купил подходящие аксессуары. Поэтому приступим к первому разделу, надеюсь, к концу статьи сохраню бодрое расположение духа.

Взаимное расположение двух прямых

Рассмотрим две прямые, заданные уравнениями в общем виде:

Тот случай, когда зал подпевает хором. Две прямые могут:

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Справка для чайников: пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

Вывод:

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность, который мы рассматривали на уроке Понятие линейной (не) зависимости векторов. Базис векторов. Но существует более цивилизованная упаковка:

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .

Вычислим определитель, составленный из координат данных векторов:
, значит, векторы не коллинеарны и прямые пересекаются.

На всякий случай поставлю на распутье камень с указателями:

1) Если мало что понятно, начните со статьи Векторы для чайников.
2) Если не понятно, как находить направляющие векторы прямых, прошу посетить урок Уравнение прямой на плоскости.
3) Если неясно, причём тут определитель, вам сюда – Понятие линейной (не) зависимости векторов. Базис векторов.

Остальные перепрыгивают камень и следуют дальше, прямо к Кащею Бессмертному =)

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при переменных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны либо совпадают.

Коэффициент пропорциональности «лямбда» нетрудно усмотреть прямо из соотношения коллинеарных направляющих векторов . Впрочем, его можно найти и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Ответ:

Очень скоро вы научитесь (или даже уже научились) решать рассмотренную задачу устно буквально в считанные секунды. В этой связи не вижу смысла предлагать что-либо для самостоятельного решения, лучше заложим ещё один важный кирпич в геометрический фундамент:

Как построить прямую, параллельную данной?

За незнание этой простейшей задачи сурово наказывает Соловей-Разбойник.

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение: Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Уравнение прямой составим по точке и направляющему вектору :

Ответ:

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими. Потому что вам ещё придётся тягаться с Бабой-Ягой, а она, знаете, любительница всяких загадок.

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Существует рациональный и не очень рациональный способ решения. Самый короткий путь – в конце урока.

С параллельными прямыми немного поработали и к ним ещё вернёмся. Случай совпадающих прямых малоинтересен, поэтому рассмотрим задачу, которая хорошо знакома вам из школьной программы:

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Найти точку пересечения прямых

Решение: Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений. Чтобы наработать соответствующие навыки, посетите урок Как решить систему уравнений?

Ответ:

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что нужно:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце урока:

Ещё не стоптана и пара башмаков, как мы подобрались ко второму разделу урока:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Начнём с типовой и очень важной задачи. В первой части мы узнали, как построить прямую, параллельную данной, а сейчас избушка на курьих ножках развернётся на 90 градусов:

Как построить прямую, перпендикулярную данной?

Прямая задана уравнением в декартовой системе координат. Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение: По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ:

Развернём геометрический этюд:

М-да… Оранжевое небо, оранжевое море, оранжевый верблюд.

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Найти точку пересечения перпендикулярных прямых , если известно уравнение в декартовой системе координат и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Наше увлекательное путешествие продолжается:

Расстояние от точки до прямой

Перед нами прямая полоса реки и наша задача состоит в том, чтобы дойти до неё кратчайшим путём. Препятствий нет, и самым оптимальным маршрутом будет движение по перпендикуляру. То есть, расстояние от точки до прямой – это длина перпендикулярного отрезка.

Расстояние в геометрии традиционно обозначают греческой буквой «ро», например: – расстояние от точки «эм» до прямой «дэ».

Расстояние от точки до прямой , заданной в декартовой системе координат, выражается формулой

Найти расстояние от точки до прямой

Решение: всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ:

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Как построить точку, симметричную относительно прямой?

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .

Оба действия подробно разобраны в рамках данного урока.

3) Точка является серединой отрезка . Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим .

Не лишним будет проверить, что расстояние тоже равно 2,2 единицам.

Трудности здесь могут возникнуть в вычислениях, но в вышке здорово выручает микрокалькулятор, позволяющий считать обыкновенные дроби. Неоднократно советовал, посоветую и снова.

Как найти расстояние между двумя параллельными прямыми?

Найти расстояние между двумя параллельными прямыми , заданными в декартовой системе координат.

Это очередной пример для самостоятельного решения. Немного подскажу: тут бесконечно много способов решения. Разбор полётов в конце урока, но лучше постарайтесь догадаться сами, думаю, вашу смекалку удалось неплохо разогнать.

Угол между двумя прямыми

Что ни угол, то косяк:

В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4 углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Как найти угол между двумя прямыми? Существуют две рабочие формулы:

Найти угол между прямыми

Решение и Способ первый

Рассмотрим две прямые, заданные общими уравнениями в декартовой системе координат:

Если прямые не перпендикулярны, то ориентированный угол между ними можно вычислить с помощью формулы:

Самое пристальное внимание обратим на знаменатель – это в точности скалярное произведение направляющих векторов прямых:

Если , то знаменатель формулы обращается в ноль, а векторы будут ортогональны и прямые перпендикулярны. Именно поэтому сделана оговорка о неперпендикулярности прямых в формулировке.

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса (см. Графики и свойства элементарных функций):

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Если очень хочется получить положительный угол, нужно поменять прямые местами, то есть коэффициенты взять из второго уравнения , а коэффициенты взять из первого уравнения . Короче говоря, начать нужно с прямой .

Утаивать не буду, сам подбираю прямые в том порядке, чтобы угол получился положительным. Так красивее, но не более того.

Для проверки решения можно взять транспортир и измерить угол.

Способ второй

Если прямые заданы уравнениями с угловым коэффициентом (декартовы координаты) и не перпендикулярны, то ориентированный угол между ними можно найти с помощью формулы:

Условие перпендикулярности прямых выражается равенством , откуда, кстати, следует очень полезная взаимосвязь угловых коэффициентов перпендикулярных прямых: , которая используется, в частности при нахождении уравнения нормали.

Алгоритм решения похож на предыдущий пункт. Но сначала перепишем наши прямые в нужном виде:

Таким образом, угловые коэффициенты:

1) Проверим, будут ли прямые перпендикулярны:
, значит, прямые не перпендикулярны.

2) Используем формулу:

Ответ:

Второй способ уместно использовать тогда, когда уравнения прямых изначально заданы с угловым коэффициентом. Следует отметить, что если хотя бы одна прямая параллельна оси ординат, то формула не применима вообще, поскольку для таких прямых угловой коэффициент не определён (см. статью Уравнение прямой на плоскости).

Есть и третий способ решения. Идея состоит в том, чтобы вычислить угол между направляющими векторами прямых с помощью формулы, рассмотренной на уроке Скалярное произведение векторов:

Здесь уже речь идёт не об ориентированном угле, а «просто об угле», то есть результат заведомо будет положительным. Загвоздка состоит в том, что может получиться тупой угол (не тот, который нужен). В этом случае придётся делать оговорку, что угол между прямыми – это меньший угол, и из «пи» радиан (не из 180 градусов!) вычитать получившийся арккосинус.

Желающие могут прорешать задачу третьим способом. Но я рекомендую всё-таки придерживаться первого подхода с ориентированным углом, по той причине, что он широко распространён.

Найти угол между прямыми , заданными в декартовой системе координат.

Это пример для самостоятельного решения. Попробуйте решить его двумя способами.

Как-то заглохла по ходу дела сказка…. Потому что нет никакого Кащея Бессмертного. Есть я, причём, не особо запаренный. Если честно, думал, статья значительно длиннее выйдет. Но все равно возьму недавно приобретенную шапочку с очками и пойду купаться в сентябрьской озёрной воде. Отлично снимает усталость и негативную энергетику.

До скорых встреч!

И помните, Бабу-Ягу никто не отменял =)

Решения и ответы:

Пример 3: Решение: Найдём направляющий вектор прямой :

Уравнение искомой прямой составим по точке и направляющему вектору . Так как одна из координат направляющего вектора нулевая, уравнение перепишем в виде:

Ответ:

Пример 5: Решение:
1) Уравнение прямой составим по двум точкам :

2) Уравнение прямой составим по двум точкам :

3) Соответствующие коэффициенты при переменных не пропорциональны: , значит, прямые пересекаются.
4) Найдём точку :

Примечание: здесь первое уравнение системы умножено на 5, затем из 1-го уравнения почленно вычтено 2-е.
Ответ:

Пример 7: Решение:
1) Найдём нормальный вектор прямой: .
2) Составим уравнение прямой по точке и направляющему вектору :

3) Найдём точку пересечения прямых :

Примечание: второе уравнение умножено на 4, затем уравнения сложены почленно.
Ответ:

Пример 9: Решение: Расстояние между параллельными прямыми найдём как расстояние от точки до прямой. Для этого достаточно найти одну точку, принадлежащую любой из прямых. В целях удобного подбора точки перепишем уравнение в виде уравнения с угловым коэффициентом: . Точка . Вычислим расстояние:

Последним действием числитель и знаменатель умножен на – чтобы избавиться от иррациональности в знаменателе.
Ответ:

Пример 11: Решение:
Способ первый
1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.
2) Угол между прямыми найдём с помощью формулы:

Таким образом:

Ответ:
Способ второй применить нельзя, так как прямая параллельна оси ординат, и её угловой коэффициент не определён.

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5


источники:

http://www.evkova.org/pryamaya-liniya-na-ploskosti-i-v-prostranstve

http://mathprofi.net/zadachi_s_pryamoi_na_ploskosti.html