Взаимодействие кислорода с йодом уравнение

Химические свойства йода

Образует ряд кислот: иодоводородную (HI), иодноватистую (HIO), иодистую (HIO2), иодноватую (HIO3), иодную (HIO4).

С металлами иод при легком нагревании энергично взаимодействует, образуя иодиды:

С водородом иод реагирует только при нагревании и не полностью, образуя иодоводород:

Атомарный иод — окислитель, менее сильный, чем хлор и бром. Сероводород H2S , Na2S2O3 и другие восстановители восстанавливают его до иона I−:

I2 + H2S = S + 2HI

При растворении в воде иод частично реагирует с ней:

I2 + H2O ↔ HI + HIO, образуя гидрат йода

Йод окисляется концентрированной кислотой:

3I2 + 10HNO3 → 6HIO3 + 10NO2 + 2H2O.

С некоторыми элементами — углеродом, азотом, кислородом, серой и селеном — йод непосредственно не соединяется. Несовместим он и с эфирными маслами, растворами аммиака, белой осадочной ртутью (образуется взрывчатая смесь).

Конфигурация внешних электронов атома Йода 5s25p5. B соответствии с этим йод проявляет в соединениях переменную валентность (степень окисления): -1; +1; +3; +5;+7.

Хлор и другие сильные окислители в водных растворах переводят его в IO3-.

В горячих водных растворах щелочей образуются Йодид и Йодат.

I2 + 2KOH = KI + KIO + H2O

3KIO = 2KI + KIO3

При нагревании йод взаимодействует с фосфором:

А йодид фосфора в свою очередь взаимодействует с водой:

2PI3 + H2O = 3HI + H2 (PHO3)

При взаимодействии H2SO4 и KI образуется продукт, окрашенный темно-бурый цвет, и сульфатная кислота восстанавливается до H2S

8KI + 9H2SO4 = 4I2 + 8KHSO4 + SO2 + H2O

Йод легко реагирует с алюминием, причем катализатором в этой реакции является вода:

3I2 + 2AL = 2ALI3

Йод может также окислять сернистую кислоту и сероводород:

H2SO3 + I2 + H2O = H2SO4 + HI

H2S + I2 = 2HI + S

При окислении йодид-иона йодат-ионом в кислой среде образуется свободный йод:

5KI + KIO3 + 3H2SO4 = 3I2 + 3K2SO4 + 3H2O

При нагревании йодатной кислоты она распадается, с образованием наиболее стойкого оксида галогенов:

2HIO3 = I2O5 + H2O

Оксид йода (V) проявляет окислительные свойства. Его используют при анализе CO:

5CO + I2O5 = I2 + 5CO2

Пары Йода ядовиты и раздражают слизистые оболочки. На кожу Йод оказывает прижигающее и обеззараживающее действие. Пятна от Йода смывают растворами соды или тиосульфата натрия.

Применение йода

В металлургии(I2) Для деревообработки(KI, KI3)

В аналитике(иодометрия) В пищевых добавках(NaI) В медецине

Фтор

Фтор— элемент 17-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы VII группы), второго периода, с атомным номером . Фтор — чрезвычайно химически активный неметалл и самый сильный окислитель, является самым лёгким элементом из группы галогенов. Простое вещество фтор при нормальных условиях — двухатомный газ (формула F2) бледно-жёлтого цвета с резким запахом, напоминающим озон или хлор. Очень ядовит.

Химия йода и его соединений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Химия йода и его соединений

История открытия этого элемента, напрямую связана с именем французского химика–технолога и фармацевта Бернара Куртуа, родившегося в 1777 и умершего в 1838 году. Свое великое открытие ученый сделал в 1811 г. В этот период, как раз, когда шли Наполеоновский войны, государство нуждалось в больших объемах селитры, которая использовалась для производства пороха. Страна уже имела большие запасы натриевой селитры, но она была малопригодна для производства пороха, так как быстро сырела на воздухе. Однако, уже был известен способ превращения натриевой селитры в калийную, с использованием золы морских водорослей. Этим и занимался Куртуа в своей лаборатории, т.е. в тот период он являлся производителем селитры. По ходу своей работы он заметил, что в золе водорослей находится какое-то вещество, которое разъедает железные и медные сосуды, но ни он сам и ни один из его помощников не знали, как это вещество выделить. Очень распространена версия о том, что совершить открытие Куртуа помог его кот. Говорят, что Бернар Куртуа не только работал в своей лаборатории, но и зачастую любил обедать в ней. А его кот часто находился рядом с ним. В один из таких дней, что-то напугало кота, и он бросился бежать, столкнув на своем пути несколько колб, в одной из которых находился спиртовой экстракт золы водорослей, а в другой серная кислота. Колбы разбились и находящиеся в них вещества смешались вместе, при этом в воздух поднялись фиолетовые пары, а затем выпали в мелкие темные кристаллики вокруг. Действительно, при действие серной кислоты на йодные соли щелочных металлов (NaI, KI), выделяется йодоводород (HI), который является непрочным веществом и в присутствие серной кислоты разлагается с образованием молекулярного йода и некоторых других продуктов: H 2 SO 4 + 8HI = H 2 S + 4I 2 + 4H 2 O

Куртуа сильно заинтересовался наблюдаемым явлением и хорошо изучил новое вещество. Некоторое время спустя Куртуа сообщил о своем открытие двум друзьям Н. Клеману и Ш.Б. Дезорму. А спустя еще какое-то время, новым элементом заинтересовались двое знаменитых ученых – француз Ж.Л. Гей-Люссак и англичанин Г. Дэви. Начав исследования данного элемента, эти ученые долгое время вели между собой горячие научные споры, а когда пришло время выбирать название химического элемента Гей-Люссак предложил – Йод, а Дэви – Йодин, причем оба руководствовались цветом (от греч. Iodes – фиолетовый).

Йод при комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым блеском. При нагревании под атмосферным давлением он сублимируется (возгоняется), превращаясь в пар фиолетового цвета; при охлаждении пары йода кристаллизуются, минуя жидкое состояние. Этим пользуются на практике для очистки йода от нелетучих примесей. Мало растворим в воде, хорошо во многих органических растворителях.

Нахождение в природе

Йод — редкий элемент. Он чрезвычайно сильно рассеян в природе и, будучи далеко не самым распространенным элементом, присутствует практически везде. Йод находится в виде йодидов в морской воде ( 20—30 мг на тонну морской воды). Присутствует в живых организмах, больше всего в водорослях ( 2,5 г на тонну высушенной морской капусты, ламинарии). Известен в природе также в свободной форме, в качестве минерала, но такие находки единичны, — в термальных источниках Везувия и на острове Вулькано (Италия). Запасы природных йодидов оцениваются в 15 млн тонн , 99 % запасов находятся в Чили и Японии. В настоящее время в этих странах ведётся интенсивная добыча йода.

Сырьём для промышленного получения йода в России служат нефтяные буровые воды

Природный йод состоит только из одного изотопа — йода-127

Строение атома и атомные характеристики йода

Электронная формула йода: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 5 .

Конфигурация внешнего электронного слоя — 5s 2 p 5 .

В соединениях проявляет степени окисления −1, 0, +1, +3, +5 и +7 (валентности I, III, V и VII).

Йод относится к группе галогенов.

Химически йод довольно активен, хотя и в меньшей степени, чем хлор и бром.

Известной качественной реакцией на йод является его взаимодействие с крахмалом, при котором наблюдается синее окрашивание в результате образования соединения включения.

С металлами йод при легком нагревании энергично взаимодействует, образуя йодиды:

Йод легко реагирует с алюминием, причем катализатором в этой реакции является вода:

С водородом йод реагирует только при нагревании и не полностью, образуя йодоводород:

Йод является окислителем, менее сильным, чем фтор, хлор и бром. Сероводород H 2 S, Na 2 S 2 O 3 и другие восстановители восстанавливают его до иона I − :

Последняя реакция также используется в аналитической химии для определения йода.

Йод может также окислять сернистую кислоту:

При растворении в воде йод частично реагирует с ней

Йод окисляется концентрированной кислотой:

В горячих водных растворах щелочей образуются йодид и йодат

I 2 + 2KOH = KI + KIO + H2O

3KIO = 2KI + KIO 3

При нагревании йод взаимодействует с фосфором:

а йодид фосфора в свою очередь взаимодействует с водой, образуя йодоводород и фосфоновую (трив. фосфористую) кислоту:

Образует ряд кислот: йодоводородную (HI), йодноватистую (HIO), йодистую (HIO 2 ), йодноватую (HIO 3 ), йодную (HIO 4 ).

Йодоводород, газ, очень похож по своим свойствам на хлороводород, но отличается более выраженными восстановительными свойствами. Очень хорошо растворим в воде (425:1), концентрированный раствор йодоводорода дымит вследствие выделения паров HI, образующего с водяными парами туман.
В водном растворе принадлежит к числу наиболее сильных кислот.
Йодоводород уже при комнатной температуре постепенно окисляется кислородом воздуха, причем под действием света реакция сильно ускоряется:

Восстановительные свойства йодоводорода заметно проявляются при взаимодействии с концентрированной серной кислотой, которая при этом восстанавливается до свободной серы или даже до H 2 S. Поэтому HI невозможно получить действием серной кислоты на иодиды. Обычно йодоводород получают действием воды на соединения йода с фосфором — РI 3 . Последний подвергается при этом полному гидролизу, образуя фосфористую кислоту и йодоводород: РI 3 + ЗН 2 О = Н 3 РО 3 + 3HI
Раствор йодоводорода (вплоть до 50%-ной концентрации) можно также получить, пропуская H 2 S в водную суспензию йода.

Йодоводород реагирует с хлоридом железа (III) с образованием молекулярного йода:

или с сульфатом железа (III):

Йодоводород легко окисляется соединениями азота, например , оксидом азота (IV) :

Химические свойства йода

Нитрат йода (III) разлагается уже при температуре ниже 0 °C.

Известны несколько более стойких аналогичных соединений йода I2(SO4)3, I(CH3COO)3, I(ClO4)3, IPO4, которые можно считать солями I +3 . При электролизе растворов солей этого катиона в неводных средах йод выделяется на катоде. Получен также ряд солей иодила, содержащих ионы (IO)n n+ .

Химическая активность йода – наименьшая в ряду галогенов. Со многими элементами йод непосредственно не взаимодействует, а с некоторыми реагирует только при повышенных температурах (водород, кремний, многие металлы).

Эта реакция обратима, т.к. образование йодоводорода происходит при такой температуре, что значительная его часть термически разлагается.

Цинк, железо и алюминий в смеси с порошком йода горят при добавлении катализатора (капля воды).

Благодаря низкой плотности перекрывания электронных облаков галоген-элемент в связи с увеличением размеров атомов галогенов при движении вниз по группе галогенов наблюдается и снижение прочности химической связи. По этой причине для ряда элементов (например, железо, фосфор, сурьма) в высших степенях окисления соединения с йодом неустойчивы. Более того, в водных растворах иодиды уже показывают свойства восстановителей, хотя и не очень сильных. Выделение йода из растворов иодидов, легко обнаруживаемое по изменению окраски крахмала (он становится синим), является удобным тестом на присутствие окислителей, например, хлора, озона, перекиси водорода и др. Для этого обычно используется т.н. “йодокрахмальная бумажка” – полоска фильтровальной бумаги, пропитанная смесью растворов иодида калия и крахмала. Предвнешние 4d-электроны атома йода не относятся к кайносимметричным и не удивительно, что соединения йода со степенью окисления +7 стабильны и давно известны. Соединения йода, в которых он находится в положительных степенях окисления, – оксиды, оксокислоты и их соли, пожалуй, столь же характерны для него, как и иодиды. Поэтому йод способен окисляться достаточно сильными окислителями, например:

Йод также как и бром, непосредственно не взаимодействует с кислородом, т.к. образует неустойчивые оксиды.

В водном растворе йод также как хлор и бром диспропорционирует:

Для получения IO4 – нужны чрезвычайно сильные окислители.

Скорость диспропорционирования IO – велика при любой температуре, поэтому соли этого иона не удается получить ни в растворе, ни в кристаллическом состоянии (хотя Я. А. Угай указывает на существование солей этого аниона, которые довольно устойчивы в отсутствие влаги).

NaOH + I2 ↔ NaI + NaIO + H2O, Kp = 30

2Na2S2O3 + I2 = 2NaI + Na2S4O6 – эту реакцию используют в аналитической химии для количественного определения йода (иодометрия).

Химические свойства астата

Если какое-то количество атомов астата добавить к йоду, то в дальнейших химических реакциях астат будет сопровождать йод. Это подобие свойств используется в медицине. Астат является очень удобным α-излучателем для радиотерапии раковых опухолей. Химики синтезировали препараты йода, избирательно концентрирующиеся в различных органах, а поскольку астат сопровождает йод, то это его свойство позволяет вместе с препаратами йода вводить радиоактивный астат.


источники:

http://infourok.ru/himiya-joda-i-ego-soedinenij-4306755.html

http://himgdz.ru/galogeni/himicheskie-svojstva-ioda/