Взаимодействие кремния с гидроксидом натрия уравнение

Реакция взаимодействия кремния и гидроксида натрия

Реакция взаимодействия кремния и гидроксида натрия

Уравнение реакции взаимодействия кремния и гидроксида натрия:

Реакция взаимодействия кремния и гидроксида натрия.

В результате реакции образуются ортосиликат натрия и водород.

Для проведения реакции используется концентрированный раствор гидроксида натрия.

Реакция протекает при нормальных условиях.

Формула поиска по сайту: Si + 4NaOH → Na4SiO4 + 2H2.

Реакция взаимодействия оксида молибдена (VI) и гидроксида натрия

Реакция взаимодействия карбоната магния и гидроксида натрия

Реакция взаимодействия оксида серебра (I) и хлорной кислоты

Выбрать язык

Популярные записи

Предупреждение.

Все химические реакции и вся информация на сайте предназначены для использования исключительно в учебных целях — только для решения письменных, учебных задач. Мы не несем ответственность за проведение вами химических реакций.

Химические реакции и информация на сайте
не предназначены для проведения химических и лабораторных опытов и работ.

Кремний. Химия кремния и его соединений

Кремний

Положение в периодической системе химических элементов

Кремний расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение кремния

Электронная конфигурация кремния в основном состоянии :

+14Si 1s 2 2s 2 2p 6 3s 2 3p 2

Электронная конфигурация кремния в возбужденном состоянии :

+14Si * 1s 2 2s 2 2p 6 3s 1 3p 3

Атом кремния содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома кремния — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства, способы получения и нахождение в природе кремния

Кремний — второй по распространенности элемент на Земле после кислорода. Встречается только в виде соединений. Оксид кремния SiO2 образует большое количество природных веществ – горный хрусталь, кварц, кремнезем.

Простое вещество кремний – атомный кристалл темно-серого цвета с металлическим блеском, довольно хрупок. Температура плавления 1415 °C, плотность 2,33 г/см 3 . Полупроводник.

Качественные реакции

Качественная реакция на силикат-ионы SiO3 2- — взаимодействие солей-силикатов с сильными кислотами . Кремниевая кислота – слабая. Она легко выделяется из растворов солей кремниевой кислоты при действии на них более сильными кислотами.

Например , если к раствору силиката натрия прилить сильно разбавленный раствор соляной кислоты, то кремниевая кислота выделится не в виде осадка, а в виде геля. Раствор помутнеет и «застынет».

Na2SiO3 + 2HCl = H2SiO3 + 2 NaCl

Видеоопыт взаимодействия силиката натрия с соляной кислоты (получение кремниевой кислоты) можно посмотреть здесь.

Соединения кремния

Основные степени окисления кремния +4, 0 и -4.

Наиболее типичные соединения кремния:

Степень окисленияТипичные соединения
+4оксид кремния (IV) SiO2

бинарные соединения с неметаллами (карбид кремния SiC)

-4силан SiH4

силициды металлов (силицид натрия Na4Si)

Способы получения кремния

В свободном состоянии кремний был получен Берцелиусом в 1822 г. Его латинское название «силиций» произошло от латинского слова « sile х», что означает «кремень». Аморфный кремний в лаборатории можно получить при прокаливании смеси металлического магния с диоксидом кремния. Для опыта диоксид кремния следует тщательно измельчить. При нагревании смеси начинается бурная реакция. Одним из продуктов этой реакции является аморфный кремний.

SiO2 + 2Mg → Si + 2MgO

Видеоопыт взаимодействия оксида кремния (IV) с магнием можно посмотреть здесь.

Еще один способ получения кремния в лаборатории — восстановление из оксида алюминием:

В промышленности использовать дорогие алюминий и магний неэффективно, поэтому используют другие, более дешевые способы:

1. Восстановление из оксида коксом в электрических печах:

SiO2 + 2C → Si + 2CO

Однако в таком процессе образующийся кремний загрязнен примесями карбидов кремния, и для производства, например, микросхем уже не подходит.

2. Наиболее чистый кремний получают восстановлением тетрахлорида кремния водородом при 1200 °С:

SiCl4 +2H2 → Si + 4HCl

или цинком :

SiCl4 + 2Zn → Si + 2ZnCl2

3. Также чистый кремний получается при разложении силана :

Химические свойства

При нормальных условиях кремний существует в виде атомного кристалла, поэтому химическая активность кремния крайне невысокая.

1. Кремний проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (при взаимодействии с элементами, расположенными выше и правее). Поэтому кремний реагирует и с металлами , и с неметаллами .

1.1. При обычных условиях кремний реагирует с фтором с образованием фторида кремния (IV):

При нагревании кремний реагирует с хлором, бромом, йодом :

1.2. При сильном нагревании (около 2000 о С) кремний реагирует с углеродом с образованием бинарного соединения карбида кремния (карборунда):

C + Si → SiC

При температуре выше 600°С взаимодействует с серой:

Si + 2S → SiS2

1.3. Кремний не взаимодействует с водородом .

1.4. С азотом кремний реагирует в очень жестких условиях:

1.5. В реакциях с активными металлами кремний проявляет свойства окислителя. При этом образуются силициды:

2Ca + Si → Ca2Si

Si + 2Mg → Mg2Si

1.6. При нагревании выше 400°С кремний взаимодействует с кислородом :

2. Кремний взаимодействует со сложными веществами:

2.1. В водных растворах щелочей кремний растворяется с образованием солей кремниевой кислоты. При этом щелочь окисляет кремний.

2.2. Кремний не взаимодействует с водными растворами кислот , но аморфный кремний растворяется в плавиковой кислоте с образованием гексафторкремниевой кислоты :

При обработке кремния безводным фтороводородом комплекс не образуется:

С хлороводородом кремний реагирует при 300 °С, с бромоводородом – при 500 °С.

2.3. Кремний растворяется в смеси концентрированных азотной и плавиковой кислот :

3Si + 4HNO3 + 12HF → 3SiF4 + 4NO + 8H2O

Бинарные соединения кремния

Силициды металлов

Силициды – это бинарные соединения кремния с металлами, в которых кремний имеет степень окисления -4. Химическая связь в силицидах металлов — ионная.

Силициды, как правило, легко гидролизуются в воде или в кислой среде.

Например , силицид магния разлагается водой на гидроксид магния и силан:

Соляная кислота легко разлагает силицид магния:

Получают силициды сплавлением простых веществ или восстановлением смеси оксидов коксом в электропечах:

2Mg + Si → Mg 2 Si

2MgO + SiO2 + 4C → Mg2Si + 4CO

Силан

Силан – это бинарное соединение кремния с водородом SiH4, ядовитый бесцветный газ.

Если поместить порошок силицида магния в очень слабый раствор соляной кислоты, то на поверхности раствора образуются пузырьки газа. Они лопаются и загораются на воздухе. Это горит силан. Он образуется при взаимодействии кислоты с силицидом магния:

Видеоопыт получения силана из силицида магния можно посмотреть здесь.

На воздухе силан горит с образованием SiO2 и H2O:

Видеоопыт сгорания силана можно посмотреть здесь.

Силан разлагается водой разлагается с выделением водорода:

Силан разлагается (окисляется) щелочами :

Силан при нагревании разлагается :

Карбид кремния

В соединениях кремния с неметаллами — ковалентная связь.

Рассмотрим карбид кремния – карборунд Si +4 C -4 . Это вещество с атомной кристаллической решеткой. Он имеет структуру, подобную структуре алмаза и характеризуется высокой твердостью и температурой плавления, а также высокой химической устойчивостью.

Карборунд окисляется кислородом при высокой температуре:

Карборунд окисляется кислородом в расплаве щелочи :

Галогениды кремния

Хлорид и фторид кремния – галогенангидриды кремниевой кислоты.
SiCl4.

Получают галогениды кремния действием хлора на сплав оксида кремния с углем :

Галогениды кремния разлагаются водой до кремниевой кислоты и хлороводорода:

Хлорид кремния (IV) восстанавливается водородом :

SiCl4 + 2H2 → Si + 4HCl

Оксид кремния (IV)

Физические свойства и нахождение в природе

Оксид кремния (IV) – это твердое вещество с атомной кристаллической решеткой. В природе встречается в виде кварца, речного песка, кремнезема и прочих модификаций:

Химические свойства

Оксид кремния (IV) – типичный кислотный оксид . За счет кремния со степенью окисления +4 проявляет слабые окислительные свойства.

1. Как кислотный оксид, диоксид кремния (IV) взаимодействует с растворами и расплавами щелочей и в расплаве с основными оксидами . При этом образуются силикаты.

Например , диоксид кремния взаимодействует с гидроксидом калия:

Еще пример : диоксид кремния взаимодействует с оксидом кальция.

SiO2 + CaO → CaSiO3

2. Оксид кремния (IV) не взаимодействует с водой , т.к. кремниевая кислота нерастворима .

3. Оксид кремния (IV) реагирует при сплавлении с карбонатами щелочных металлов . При этом работает правило: менее летучий оксид вытесняет более летучий оксид из солей при сплавлении.

Например , оксид кремния (IV) взаимодействует с карбонатом калия. При этом образуется силикат калия и углекислый газ:

4. Из кислот диоксид кремния реагирует только с плавиковой или с газообразным фтороводородом :

5. При температуре выше 1000 °С оксид кремния реагирует с активными металлами, при этом образуется кремний.

Например , оксид кремния взаимодействует с магнием с образованием кремния и оксида магния:

SiO2 + 2Mg → Si + 2MgO

Видеоопыт взаимодействия оксида кремния (IV) с магнием можно посмотреть здесь.

При избытке восстановителя образуются силициды:

SiO2 + 4Mg → Mg2Si + 2MgO

6. Оксид кремния (IV) взаимодействует с неметаллами.

Например , оксид кремния (IV) реагирует с водородом в жестких условиях. При этом оксид кремния проявляет окислительные свойства:

Еще пример : оксид кремния взаимодействует с углеродом. При этом образуется карборунд и угарный газ:

SiO2 + 3С → SiС + 2СО

При сплавлении оксид кремния взаимодействует с фосфатом кальция и углем:

Кремниевая кислота

Строение молекулы и физические свойства

Кремниевые кислоты — очень слабые, малорастворимые в воде соединения общей формулы nSiO2•mH2O. Образует коллоидный раствор в воде.

Метакремниевая H2SiO3 существует в растворе в виде полимера:

Способы получения

Кремниевая кислота образуется при действии сильных кисло т на растворимые силикаты (силикаты щелочных металлов).

Например , при действии соляной кислоты на силикат натрия:

Видеоопыт получения кремниевой кислоты из силиката натрия можно посмотреть здесь.

Даже слабая угольная кислота вытесняет кремниевую кислоту из солей:

Химические свойства

1. Кремниевая кислота — нерастворимая. Кислотные свойства выражены очень слабо, поэтому кислота реагирует только с сильными основаниями и их оксидами :

Например , кремниевая кислота реагирует с концентрированным гидроксидом калия:

2. При нагревании кремниевая кислота разлагается на оксид и воду :

Силикаты

Силикаты — это соли кремниевой кислоты. Большинство силикатов нерастворимо в воде, кроме силикатов натрия и калия, их называют «жидким стеклом».

Способы получения силикатов:

1 . Растворение кремния, кремниевой кислоты или оксида в щелочи:

2. Сплавление с основными оксидами:

СаО + SiO2 → CaSiO3

3. Взаимодействие растворимых силикатов с солями:

Оконное стекло (натриевое стекло) — силикат натрия и кальция: Na2O·CaO·6SiO2.

Стекло получают при сплавлении в специальных печах смеси соды Na2CO3, известняка CaCO3 и белого песка SiO2:

Для получения специального стекла вводят различные добавки, так стекло содержащее ионы Pb 2+ – хрусталь; Cr 3+ – имеет зеленую окраску, Fe 3+ – коричневое бутылочное стекло, Co 2+ – дает синий цвет, Mn 2+ – красновато-лиловый.

Гидроксид кремния: свойства, структурная формула и способы получения

Впервые кремний стал известен человечеству как самостоятельный химический элемент в 1825 году. Это вещество является неметаллом, который в зависимости от условий реакции может быть восстановителем и окислителем. Основные химические и физические свойства этого элемента повлияли на его распространённость в народном хозяйстве. Структурную формулу гидроксид кремния, а также сферы его использования изучают на уроках химии в 8 классе.

Краткое описание

В привычном понимании высшего гидроксид кремния не существует. Но благодаря своим физическим свойствам этот элемент получил большой спрос в промышленности. В аморфном состоянии это вещество в результате химической реакции с водяным паром (при температуре +500 °C) образует водород плюс диоксид кремния. Например, Si (аморфный) + 2H2O (пар) → SiO2 + 2H2.

Полученный диоксид кремния представляет собой слабый кислотный оксид, который после присоединения водорода может образовывать кремниевые кислоты. Для обозначения гидроксид кремния используется общая формула — H2SiO3.

В зависимости от общего количества задействованных атомов кремния, водорода и кислорода может образовываться несколько разновидностей кислот:

  • Ортокремниевая (H4SiO4).
  • Метакремниевая (H2SiO3).
  • Поликремниевая (nSiO2∙mH2O).
  • Дикремниевая (H2Si2O5, H10Si2O9).
  • Пирокремниевая (H6Si2O7).

В научной среде соли кремниевых кислот (химическая формула — nSiO2∙mH2O) принято называть силикатами. Для их получения недостаточно соединить H2SiO3 с Н2О, так как даже при самой высокой температуре диоксид не вступает в реакцию с водой. Чистый кремний можно получить только в результате взаимодействия гидроокиси кремния с водородом. Записать эту химическую реакцию можно так: SiO2 + 2Н2 → Si + 2H2O.

В лабораторных условиях получить H2SiO3 можно только двумя способами:

  • Использование гидролиза силанов.
  • Воздействие на силикаты калия и натрия сильных кислот: Na2SiO3 + 2HCl → H2SiO3↓ + 2NaCl.

Физические характеристики

В промышленной отрасли чаще всего используется кристаллический кремний. Это связано с тем, что физические свойства этого материала позволяют выпускать различный товар с высокими эксплуатационными характеристиками. Плавиться H2SiO3 начинает при температуре +1417 °C, а закипает при +2600 °C. Материал весьма хрупкий, так как показатель его плотности не превышает 2.33 г/куб. см. Гидроксид кремния получил 7 баллов по шкале Мооса. Уровень диэлектрической проницаемости не превышает 1.17.

H2SiO3 является неметаллом, из-за чего его электрические свойства полностью зависят от присутствующих в составе примесей. В промышленной отрасли специалисты научились использовать эту особенность химического вещества в свою пользу, так как на любом этапе производства они могут смоделировать нужный тип проводника.

При комнатной температуре силициум является хрупким, но если нагреть его до отметки +800 °C, тогда не исключена пластическая деформация. Итоговые характеристики аморфного кремния могут существенно отличаться, что связано с его гигроскопичностью. Это химическое вещество может вступать в различные реакции даже при комнатной температуре.

Химические свойства

Практически во всех существующих соединениях H2SiO3 проявляет следующие степени окисления: +2, -4, +4. Вещество является химически инертным при низких температурах. Под воздействием кислорода кремний покрывается тонкой плёнкой оксида. После нагревания до отметки +400 °C элемент окисляется. С фтором H2SiO3 может взаимодействовать в обычных условиях, а вот с азотом, галогенами и углеродом вступает в химическую реакцию только под воздействием высоких температур.

Задействованные щёлочи могут перевести кремний в Na2SiO3 с последующим выделением водорода. H2SiO3 растворим практически во всех расплавленных металлах, а с некоторыми из них может формировать различные соединения, которые называются силицидами. Образуемые вещества получили большой спрос в народном хозяйстве.

Гидроксид кремния в сочетании с водородом может формировать специфические соединения, которые имеют общую формулу — SinH2n+2 (силаны). В химии используются различные кремнийорганические соединения. Например, органосилоксаны, силиконы. Но наибольшее значение имеют nSiO2∙mH2O.

В результате растворения аморфного кремния в концентрированном растворе гидроксид натрия (Si + NaOH) происходит образование средней соли — ортосиликата натрия, а также выделение газа водорода. Молекулярное уравнение реакции имеет вид: Si + 4NaOH → Na4SiO4 + 2H2. Чтобы понять, какой будет реакция взаимодействия соляной кислоты с оксидом кремния, нужно обратить внимание на следующую формулу: SiO2 + 4HCl → SiCl4 + 2H2O.

В природе широко распространены соли кремниевых кислот: различные минералы класса силикатов. Алюмосиликаты образуются в результате изоморфного замещения в их структуре небольшого процента H2SiO3 алюминием.

Способы получения

Чаще всего nSiO2∙mH2O стараются получить непрямым способом. В лабораторных условиях на силикат натрия или калия воздействуют сильной кислотой. Например, Na2SiO3 + 2HCl = H2SiO3 + 2NaCl. Но в этом случае невозможно получить идеально чистую кислоту. В водном растворе обязательно будет присутствовать высокодисперсная коллоидная система, которая через некоторое время превратится в гель.

Многие кремниевые соединения можно получить благодаря гидролизу хлорсиланов. Эту химическую реакцию можно записать так: SiH2Cl2 + 3H2O = H2SiO3 +2HCl + 2H2. Если всё сделано правильно, то nSiO2∙mH2O будут являться финальным продуктом гидролитического расщепления элементов. Методы ионного обмена и электродиализа целесообразно использовать в том случае, если речь касается промышленного производства, либо различных лабораторных экспериментов. Благодаря перенасыщенным растворам кремниевых кислот получается силикагель (SiOH). Сама технология производства состоит из нескольких этапов:

  1. Первым делом образуется коллоидный раствор, который после остывания превращается в однородную массу, называемую гидрогелем.
  2. На втором этапе происходит созревание. Учитывается не только гелеобразование, но и разжижение химического вещества.
  3. Полученный гель очищают, промывают от солей.
  4. На финальном этапе вещество высушивают и превращают в ксерогель.

В лабораторных условиях было доказано, что самый качественный силикагель можно получить после гидролиза кремниевых и ортокремниевых соединений. Этот химический процесс можно изобразить следующим образом: Na2SiO3 + H2SO4 = nSiO2 • mH2O + Na2SO4. В этой графической формуле использовался гидратированный аморфный кремнезём.

Сферы использования

H2SiO3 благодаря своим физическим и химическим характеристикам получил большой спрос в различных отраслях современной промышленности. В чистом виде аморфный и кристаллический кремний применяется в следующих сферах:

  • Изготовление качественного поликремния.
  • В металлургии H2SiO3 используется как легирующая добавка, которая может менять свойства металлов и их сплавов. Кремний применяется при выплавке чугуна и стали.
  • Серийное производство солнечных батарей. Среди преимуществ такого получения электроэнергии можно выделить экономичность, износоустойчивость и экологическую безопасность.
  • H2SiO3 часто используется в сочетании с органическими веществами. Кремнийорганические материалы применяются при изготовлении посуды, различных инструментов.
  • Производство комплектующих деталей для лазерных устройств.

Кремниевые соединения являются важными элементами для кожного покрова, ногтей и волос. H2SiO3 используется для производства лекарственных препаратов и косметологических средств.

Составы на основе кремния гарантируют повышение упругости соединительных тканей. При правильном применении препараты с H2SiO3 улучшают усвоение кальция, а также нормализуют работу органов желудочно-кишечного тракта.


источники:

http://chemege.ru/silicium/

http://tarologiay.ru/nauka/gidroksid-kremniya-svoystva-strukturnaya-formula-i-sposoby-polucheniya.html