Взаимодействие неметаллов с неметаллами уравнения

Химические свойства неметаллов

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов:

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием.

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом.

1.6. Водород горит, взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов. Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например, водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов.

Например , водород взаимодействует с оксидом кремния:

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Химические свойства галогенов

Химическая активность галогенов увеличивается снизу вверх – от астата к фтору.

1. Галогены проявляют свойства окислителей . Галогены реагируют с металлами и неметаллами .

1.1. Галогены не горят на воздухе. Фтор окисляет кислород с образованием фторида кислорода:

1.2. При взаимодействии галогенов с серой образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с галогенами образуются галогениды фосфора и углерода:

1.4. При взаимодействии с металлами галогены проявляют свойства окислителей, образуя галогениды.

Например , железо реагирует с галогенами с образованием галогенидов. При этом фтор, хлор и бром образуются галогениды железа (III), а c йодом — соединение железа (II):

3Cl2 + 2Fe → 2FeCl3

Аналогичная ситуация с медью : фтор, хлор и бром окисляют медь до галогенидов меди (II),а йод до йодида меди (I):

I2 + 2Cu → 2CuI

Активные металлы бурно реагируют с галогенами, особенно с фтором и хлором (горят в атмосфере фтора или хлора).

Еще пример : алюминий взаимодействует с хлором с образованием хлорида алюминия:

3Cl2 + 2Al → 2AlCl3

1.5. Водород горит в атмосфере фтора:

С хлором водород реагирует только при нагревании или освещении. При этом реакция протекает со взрывом:

Бром также реагирует с водородом с образованием бромоводорода:

Взаимодействие йода с водородом происходит только при сильном нагревании, реакция протекает обратимо, с поглощением теплоты (эндотермическая):

1.6. Галогены реагируют с галогенами. Более активные галогены окисляют менее активные.

Например , фтор окисляет хлор, бром и йод:

2. Со сложными веществами галогены реагируют, также проявляя преимущественно окислительные свойства. Галогены охотно диспропорционируют при растворении в воде или в щелочах.

2.1. При растворении в воде хлор и бром частично диспропорционируют, повышая и понижая степень окисления. Фтор окисляет воду.

Например , хлор при растворении в холодной воде диспропорционирует до ближайших стабильных степеней окисления (+1 и -1), образует при этом соляную кислоту и хлорноватистую кислоту (хлорная вода):

Cl2 + H2O ↔ HCl + HClO

При растворении в горячей воде хлор диспропорционирует до степеней окисления -1 и +5, образуя соляную кислоту и хлорную кислоту:

Фтор реагирует с водой со взрывом:

2.2. При растворении в щелочах хлор, бром и йод диспропорционируют с образованием различных солей. Фтор окисляет щелочи.

Например , хлор реагирует с холодным раствором гидроксидом натрия:

При взаимодействии с горячим раствором гидроксида натрия образуются хлорид и хлорат:

Еще пример : хлор растворяется в холодном растворе гидроксида кальция:

2.3. Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов.

Например , хлор вытесняет йод и бром из раствора йодида калия и бромида калия соответственно:

Cl2 + 2NaI → 2NaCl + I2

Cl2 + 2NaBr → 2NaCl + Br2

Еще одно свойство: более активные галогены окисляют менее активные.

Например , фтор окисляет хлор с образованием фторида хлора (I):

Cl2 + F2 → 2Cl + F –

В свою очередь, хлор окисляет йод. При этом в растворе образуется соляная кислота и йодная кислота:

2.4. Галогены проявляют окислительные свойства, взаимодействуют с восстановителями.

Например , хлор окисляет сероводород:

Cl2 + H2S → S + 2HCl

Хлор также окисляет сульфиты:

Также галогены окисляют пероксиды:

Или, при нагревании или на свету, воду:

2Cl2 + 2H2O → 4HCl + O2 (на свету или кип.)

Химические свойства кислорода

ри нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя (с большинством химических элементов) и свойства восстановителя (только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами , и с неметаллами . Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремнием с образованием оксидов:

1.3. Фосфор горит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

Но чаще фосфор сгорает до оксида фосфора (V):

1.4. С азотом кислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000 о С), образуя оксид азота (II):

N2 + O2→ 2NO

1.5. В реакциях с щелочноземельными металлами, литием и алюминием кислород также проявляет свойства окислителя. При этом образуются оксиды:

2Ca + O2 → 2CaO

Однако при горении натрия в кислороде преимущественно образуется пероксид натрия:

2Na + O2→ Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

K + O2→ KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn + O2→ 2ZnO

Железо , в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe + O2→ 2FeO

4Fe + 3O2→ 2Fe2O3

3Fe + 2O2→ Fe3O4

1.6. При нагревании с избытком кислорода графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды . При этом образуются оксиды:

4FeS + 7O2→ 2Fe2O3 + 4SO2

Ca3P2 + 4O2→ 3CaO + P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения ( сероводород, аммиак, метан, силан гидриды . При этом также образуются оксиды:

2H2S + 3O2→ 2H2O + 2SO2

Аммиак горит с образованием простого вещества, азота:

4NH3 + 3O2→ 2N2 + 6H2O

Аммиак окисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 + 5O2→ 4NO + 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора ( сероуглерод, сульфид фосфора и др.):

CS2 + 3O2→ CO2 + 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления ( оксид углерода (II), оксид железа (II) и др.):

2CO + O2→ 2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например , кислород окисляет гидроксид железа (II):

Кислород окисляет азотистую кислоту :

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 + 2O2→ CO2 + 2H2O

2CH4 + 3O2→ 2CO + 4H2O

CH4 + O2→ C + 2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами .

1.1. При горении серы на воздухе образуется оксид серы (IV) :

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

2S + C → CS2

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например , железо и ртуть реагируют с серой с образованием сульфидов железа (II) и ртути:

S + Fe → FeS

S + Hg → HgS

Еще пример : алюминий взаимодействует с серой с образованием сульфида алюминия:

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например , азотная кислота окисляет серу до серной кислоты:

Серная кислота также окисляет серу. Но, поскольку S +6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

Соединения хлора, например , бертолетова соль , также окисляют серу до +4:

S + 2KClO3 → 3SO2 + 2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например , сера реагирует с гидроксидом натрия:

При взаимодействии с перегретым паром сера диспропорционирует:

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами .

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000 о С), на электрической дуге (в природе – во время грозы) :

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2. При сильном нагревании (2000 о С или действие электрического разряда) азот реагирует с серой , фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С + N2 → N≡C–C≡N

1.3. Азот взаимодействует с водородом при высоком давлении и высокой температуре ,в присутствии катализатора. При этом образуется аммиак:

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

Например , литий реагирует с азотом с образованием нитрида лития:

2. Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например , азот окисляет гидрид лития:

Химические свойства фосфора

При нормальных условиях фосфор довольно химически активен.

1. Фосфор проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому фосфор реагирует с металлами и неметаллами .

1.1. При взаимодействии с кислородом воздуха образу

ются оксиды – ангидриды соответствующих кислот :

Горение белого фосфора:

Горение красного фосфора:

1.2. При взаимодействии фосфора с галогенами образуются галогениды с общей формулой PHal3 и PHal5:

Фосфор реагирует с бромом:

1.3. При взаимодействии фосфора с серой образуются сульфиды:

1.4. При взаимодействии с металлами фосфор проявляет свойства окислителя, продукты реакции называют фосфидами.

Например , кальций и магний реагируют с фосфором с образованием фосфидов кальция и магния:

Еще пример : натрий взаимодействует с фосфором с образованием фосфида натрия:

P + 3Na → Na3P

1.5. С водородом фосфор непосредственно не взаимодействует.

2. Со сложными веществами фосфор реагирует, проявляя окислительные и восстановительные свойства. Фосфор диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями фосфор окисляется до оксида фосфора (V) или до фосфорной кислоты.

Например , азотная кислота окисляет фосфор до фосфорной кислоты:

Серная кислота также окисляет фосфор:

Соединения хлора, например , бертолетова соль , также окисляют фосфор:

Реакция красного фосфора с бертолетовой солью. Этот процесс заложен в принципе возгорания спички при трении её о шершавую поверхность коробка.

Некоторые металлы-сильные окислители также окисляют фосфор. Например , оксид серебра (I) :

2.2. При растворении в щелочах фосфор диспропорционирует до гипофосфита и фосфина.

Например , фосфор реагирует с гидроксидом калия:

Или с гидроксидом кальция:

Химические свойства углерода

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Химические свойства кремния

При нормальных условиях кремний существует в виде атомного кристалла, поэтому химическая активность кремния крайне невысокая.

1. Кремний проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (при взаимодействии с элементами, расположенными выше и правее). Поэтому кремний реагирует и с металлами , и с неметаллами .

1.1. При обычных условиях кремний реагирует с фтором с образованием фторида кремния (IV):

При нагревании кремний реагирует с хлором, бромом, йодом :

1.2. При сильном нагревании (около 2000 о С) кремний реагирует с углеродом с образованием бинарного соединения карбида кремния (карборунда):

C + Si → SiC

При температуре выше 600°С взаимодействует с серой:

Si + 2S → SiS2

1.3. Кремний не взаимодействует с водородом .

1.4. С азотом кремний реагирует в очень жестких условиях:

1.5. В реакциях с активными металлами кремний проявляет свойства окислителя. При этом образуются силициды:

2Ca + Si → Ca2Si

Si + 2Mg → Mg2Si

1.6. При нагревании выше 400°С кремний взаимодействует с кислородом :

2. Кремний взаимодействует со сложными веществами:

2.1. В водных растворах щелочей кремний растворяется с образованием солей кремниевой кислоты. При этом щелочь окисляет кремний.

2.2. Кремний не взаимодействует с водными растворами кислот, но аморфный кремний растворяется в плавиковой кислоте с образованием гексафторкремниевой кислоты:

При обработке кремния безводным фтороводородом комплекс не образуется:

С хлороводородом кремний реагирует при 300 °С, с бромоводородом – при 500 °С.

2.3. Кремний растворяется в смеси концентрированных азотной и плавиковой кислот :

3Si + 4HNO3 + 12HF → 3SiF4 + 4NO + 8H2O

Степень окисления в неорганической химии

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

2. Неметалл + неметалл = бинарное соединение.

Чаще всего неметаллы реагируют с другими неметаллами при нагревании, образуя бинарные соединения (неметалл с более низкой электроотрицательностью выступает как восстановитель, с более высокой – как окислитель). Исключение составляют реакции между галогенами (кроме F 2 ) и кислородом, поэтому оксиды галогенов получают косвенными способами. F 2 , как самый активный неметалл, при обычных условиях реагирует со всеми неметаллами (с Н 2 со взрывом).

F 2 + H 2 = 2HF (так же с Н 2 реагируют Cl 2 , Br 2 и I 2 ), F 2 + O 2 = O 2 F 2 ,

2H 2 + O 2 = 2H 2 O, H 2 + S = H 2 S,

2S + C = CS 2 , S + O 2 = SO 2 ,

2C + O 2 (недост.) = 2CO, C + O 2 (изб.) = CO 2 ,

2P + 3Cl 2 (недост.) = 2PCl 3, 2P + 5Cl 2 (изб.) = 2PCl 5 ,

4P + 3O 2 (недост.) = 2P 2 O 3 , 4P+ 5O 2 (изб.) = 2P 2 O 5 ,

3. Металл (в ряду напряжений до Al) + H 2 O = гидроксид + H 2 .

Металл (в ряду напряжений от Мn до H 2 ) + H 2 O оксид + H 2 .

Металл (в ряду напряжений после H 2 ) + H 2 O (нет реакции).

Металлы, стоящие в ряду напряжений по Al включительно, взаимодействуют с водой при обычных условиях, образуя гидроксид металла и водород (Mg реагирует при нагревании, Al – при снятии плотной пленки оксида Al 2 O 3 , Be с водой не взаимодействует). Например:

2K + 2H 2 O = 2KOH + H 2 .

Металлы, стоящие в ряду напряжений от Al до Н 2 , взаимодействуют с перегретым паром, образуя водород и оксид металла:

3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 , 2Cr + 3H 2 O = Cr 2 O 3 + 3H 2 .

Металлы, стоящие в ряду напряжений после Н 2 , с водой не взаимодействуют:

Cu + H 2 O (нет реакции).

4. Неметалл + вода.

При обычных условиях с водой взаимодействует только F 2 . При этом образуется cложная смесь веществ, т.к. выделяющийся атомарный кислород обладает высокой химической активностью:

F 2 + H 2 O = 2HF + O (H 2 O + O = H 2 O 2 , O + O 2 = O 3 , O + F 2 = OF 2 ).

Частично с водой взаимодействуют Cl 2 и Br 2 , однако равновесие этих реакций сильно смещено влево:

Cl 2 + H 2 O HCl + HСlO, Br 2 + H 2 O HBr + HBrO.

Иногда этими реакциями пренебрегают, считая, что имеют дело с растворами Cl 2 и Br 2 в воде – хлорной и бромной водой.

При высокой температуре некоторые неметаллы реагируют с водяным паром:

С + H 2 O = CO + H 2 , Si + 2H 2 O = SiO 2 + 2H 2 .

Взаимодействие металлов и неметаллов с другими соединениями будет изучено позже.

П р о в е р ь с е б я

Упражнение 1. Стрелками отметь результаты взаимодействия воды с металлами.

Упражнение 2. Закончи уравнения реакций:

Упражнение 3. Определи, о каких элементах идет речь:

а) элемент А – жидкий при н.у. металл . ;

б) неметалл Б при взаимодействии с водяным паром образует песок . ;

в) элемент В образует два газообразных простых вещества . ;

г) элемент Г образует самое легкое газообразное при н. у. простое вещество . ;

д) оксид элемента Д – самый распространенный на Земле . .

Упражнение 4. Составь уравнения реакций согласно схемам (в отдельной тетради):

а) С H 2 NaH H 2 H 2 O KOH;

б) Cl 2 HCl H 2 H 2 O HCl;

в) N 2 Ca 3 N 2 NH 3 .

Упражнение 5. По схемам реакций определи вещества A, В и С (А и В – простые, т.е. состоят из атомов одного элемента):

A + B H 2 O, B + Cl 2 C. . .

7.1. Kлассификация оксидов

Оксиды – соединения атомов двух элементов, один из которых кислород в степени окисления –2.

В оксидах атомы кислорода связаны только с атомами другого элемента и не связаны друг с другом. Соединения, содержащие в своем составе непосредственно связанные друг с другом атомы кислорода (–О–О–), называют пероксидами .

Не образуют оксидов только Hе, Ne, Аr и F. Различают высшие оксиды , в которых атом элемента проявляет высшую степень окисления (обычно равна номеру группы, в которой находится элемент), и низшие оксиды – те, в которых атом элемента проявляет низшую степень окисления. Оксиды, содержащие атомы элемента в разных степенях окисления, называют двойными, например:

Fe 3 O 4 FeO•Fe 2 O 3 , Mn 3 O 4 MnO•Mn 2 O 3 , Pb 2 O 3 PbO•PbO 2 .

По химическим свойствам оксиды делятся на солеобразующие (образуют соли при взаимодействии с кислотами и/или щелочами) и несолеобразующие (не образуют солей, безразличны к кислотам и щелочам; к ним относятся СO, NO, N 2 O, SiO, S 2 O).

Многие солеобразующие оксиды присоединяют воду. Этот процесс называется гидратацией, а его продукты – гидратами оксидов, или гидроксидами (содержат одну или несколько гидроксигрупп –ОН).

Некоторые оксиды с водой не взаимодействуют, их гидроксиды можно получить косвенным путем.

Оксид и гидроксид соответствуют друг другу, если содержат один и тот же элемент с одной и той же степенью окисления атома.

Солеобразующие оксиды разделяют на осн о вные, кислотные и амфотерные в зависимости от типа соответствующего гидроксида. Kислотно-осн о вные свойства родственных оксидов и гидроксидов (Na 2 O и NaOH, SO 3 и H 2 SO 4 ) cовпадают.

Основными называют оксиды, которым соответствуют гидроксиды – основания.

Kислотными называют оксиды, которым соответствуют гидроксиды – кислоты.

Амфотерными называют оксиды, которым соответствуют амфотерные гидроксиды.

Неметаллы образуют только кислотные и несолеобразующие оксиды; металлы образуют все осн о вные, все амфотерные и некоторые кислотные оксиды. Многие металлы побочных подгрупп, имеющие в соединениях переменную с.о. атомов, могут образовывать несколько оксидов и гидроксидов, характер которых зависит от с.о. атома элемента. С ростом степени окисления атома элемента его электроотрицательность растет. Соответственно растут неметаллические свойства элемента, а также кислотные свойства его оксида и гидроксида.

Оксиды металлов в с.о. атомов +1 (Na 2 O, K 2 O и др.), а также большинство оксидов металлов в с.о. атомов +2 (FeO, MgO и др.) являются осн о вными. Исключения: BeO, ZnO, PbO, SnO – амфотерные. Большинство оксидов металлов в с.о. атомов +3 и +4 – амфотерные (Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , SnO 2 , PbO 2 и др.). Оксиды металлов в с.о. атомов +5, +6, +7, +8 – кислотные (Mn 2 O 7 , CrO 3 , Sb 2 O 5 и др.) (схема 1).

П р о в е р ь с е б я

Упражнение 1. Выбери из списка формулы оксидов, назови их и составь их графические формулы (в оксидах число связей Э–О равно с.о. атома элемента, связей О–О нет):

H 2 O, CO 2 , As 2 O 3 , P 2 O 5 , SO 2 , OF 2 , H 2 O 2 , I 2 O 7 ,

HClO, SO 3 , Na 2 O 2 , KO 2 , KO 3 , P 4 O 6 , P 4 O 10 , СO.

Упражнение 2. Составь графические формулы веществ:

углекислый газ, угарный газ, веселящий газ, негашеная известь, глинозем, жженая магнезия, кремнезем, сернистый газ.

Упражнение 3. Не обращаясь к периодической системе (ПС), определи, в какой группе находятся химические элементы, образующие высшие оксиды:

PbO 2 – ………. , Sb 2 O 5 – ………. , TeO 3 – ………. ,

Mn 2 O 7 – ………. , OsO 4 – ………. , Sc 2 O 3 – ………. .

Упражнение 4. Составь формулы высших оксидов элементов с порядковыми номерами 14, 34, 41, 75, 33, 50, 40, назови их и определи их характер (основный, кислотный, амфотерный, несолеобразующий).

Упражнение 5. Изобрази графические формулы и укажи характер оксидов:

а) азота со степенями окисления атома +1, +2, +3, +5;

б) хлора со степенями окисления атома +1, +3, +5, +7;

в) марганца со степенями окисления атома +2, +3, +4, +7.

Упражнение 6. Составь формулы и укажи характер высших оксидов всех элементов: а) VIа группы ПС; б) 3-го периода ПС. Kакая существует закономерность в изменении свойств высших оксидов элементов одного периода?

Упражнение 7. Определи элементы по следующим данным:

а) элемент 3-го периода, высший оксид – Э 2 О 5 , ……………………. ;

б) элемент 2-го периода, высший оксид – ЭО 2 , …………………….. ;

в) элемент V группы ПС, образует высший оксид, в котором суммарное число протонов в молекуле меньше 80, а суммарное число электронов больше 55, …………………. ;

г) элемент Х образует два бинарных соединения с кислородом, ни одно из которых оксидом не является, …………………. ;

д) элемент Y образует два газообразных оксида (с.о. равны +2 и +4), один из них – несолеобразующий …………………….. ;

е) элемент Z в виде простого вещества входит в состав земной атмосферы, образует два несолеобразующих оксида и несколько солеобразующих …………………………. .

Упражнение 8. Используя литературные источники, определи агрегатное состояние, цвет и летучесть следующих оксидов:

SO 2 , SO 3 , NO 2 , N 2 O 3 , N 2 O 5 , Cl 2 O, Cl 2 O 7 , HgO, WO 3 , Mn 2 O 7 , MnO 2 ,

Fe 2 O 3 , FeO, Cr 2 O 3 , CrO 3 , ZnO, CuO, Cu 2 O, SnO 2 , P 2 O 3 , P 2 O 5 .

7.2. Оксиды и соответствующие им гидроксиды

Программа деятельности № 4
«Составление формулы оксида, соответствующего гидроксиду»

1) Определи степень окисления атома элемента в гидроксиде

2) Составь формулу оксида элемента с найденной степенью окисления атома (с.о. атома кислорода в оксиде равна –2)

Программа деятельности № 5
«Составление формулы гидроксида, соответствующего оксиду»

Программа деятельности № 6
«Составление графической формулы гидроксида»*

* Для гидроксидов, в составе которых один атом «гидроксидобразующего» элемента.

7.3. Несолеобразующие оксиды

Несолеобразующие оксиды (СO, NO, N 2 O, SiO, S 2 O) в химические реакции вступают редко, они безразличны к кислотам и щелочам и не имеют соответствующих гидроксидов. Наибольший интерес представляет СО, который при высокой температуре восстанавливает многие металлы и неметаллы из их оксидов.

CO + CuO = Cu + CO 2 , 4CO + Fe 3 O 4 = 3Fe + 4CO 2 ,

CO + H 2 O H 2 + CO 2 , 5CO + P 2 O 5 = 2P + 5CO 2 .

П р о в е р ь с е б я

Упражнение 1. Составь графические формулы оксидов, соответствующих гидроксиду:

а) HNO 3 ; б) H 4 P 2 O 7 ; в) Cr(OH) 3 ; г) H 2 Cr 2 O 7 ; д) HNO 2 ; е) H 2 SO 3 .

Упражнение 2. Составь графические формулы гидроксидов, соответствующих оксиду:

а) N 2 O 3 ; б) P 2 O 5 ; в) NO 2 ; г) BeO; д) CrO 3 ; е) CO; ж) СO 2 ; з) Co 2 O 3 ; и) Cl 2 O 7 .

Упражнение 3. Заполни таблицу, составь формулы оксидов, гидроксидов и солей, соответствующих друг другу (кислота и соответствующая ей соль имеют одинаковый кислотный остаток; основание и соответствующая ему соль имеют одинаковый катион).

ХИМИЧЕСКИЕ СВОЙСТВА НЕМЕТАЛЛОВ

Описание: Основные химические свойства неметаллов.Применение неметаллов. Основные химические свойства неметаллов Неметаллы за исключением инертных газов химически активные вещества.

Дата добавления: 2015-01-19

Размер файла: 13.62 KB

Работу скачали: 78 чел.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Тема № 3. ХИМИЧЕСКИЕ СВОЙСТВА НЕМЕТАЛЛОВ

1. Основные химические свойства неметаллов.

2.Оксиды неметаллических элементов.

3.Распространение неметаллических элементов в природе.

1. Основные химические свойства неметаллов

Неметаллы (за исключением инертных газов) химически активные вещества.

В реакциях с металлами атомы неметаллических элементов присоединяют электроны, а в реакциях с неметаллами образуют совместные электронные пары.

Узнать, к какому атому смещаются общие электронные пары, помогает ряд электроотрицательности:

F, O, N, Cl, Br, I, S, C, Se, H, P, As, B, Si

  1. Взаимодействие неметаллов с металлами :

2Mg + O 2 = 2MgO (магний оксид)

6Li + N 2 = 2Li 3 N (литий нитрид)

2Al + 3Cl 2 = 2AlCl 3 (алюминий хлорид)

Ca + H 2 = CaH 2 (кальций гидрид)

Fe + S = FeS ( ферум (II) сульфид )

При взаимодействии неметаллов с металлами образуются бинарные соединения с ионной химической связью.

2 . Взаимодействие неметаллов с кислородом :

С + О 2 = СО 2 (карбон (IV) оксид)

S + O 2 = SO 2 (c ульфур (IV) оксид )

Продуктами взаимодействия неметаллов с кислородом являются бинарные соединения с ковалентной полярной связью – оксиды , в которых кислород имеет степень окисления — 2.

3. Взаимодействие неметаллов с водородом :

H 2 + Cl 2 = 2HCl (гидроген хлорид или хлороводород)

H 2 + S = H 2 S (гидроген сульфид или сероводород)

При взаимодействии неметаллов с водородом образуются летучие (газообразные или жидкие) бинарные соединения с ковалентной полярной связью.

4. Взаимодействие неметаллов с другими неметаллами :

С + 2S = CS 2 (карбон (IV) сульфид)

Si + 2Cl 2 = SiCl 4 (силиций (IV) хлорид)

Продуктами взаимодействия двух неметаллов являются вещества с различным агрегатным состоянием, которые имеют ковалентный тип химической связи.

  1. Оксиды неметаллических элементов

Оксиды неметаллических элементов делят на:

а) солеобразующие (их большинство) и

б) несолеобразующие (СО, NO, N 2 O, H 2 O).

Среди оксидов есть газообразные вещества (СО, СО 2 , SO 2 ), твердые вещества (Р 2 О 5 ), жидкости (H 2 O, Сl 2 O 7 ).

Во всех без исключения оксидах атомы неметаллических элементов, соединенные с Оксигеном, имеют положительные степени окисления.

Большинство оксидов неметаллических элементов кислотные . Они взаимодействуют:

  • с водой с образованием кислот,
  • с основными и амфотерными оксидами с образованием солей,
  • с основаниями и амфотерными гидроксидами с образованием солей и воды.
  1. Распространение неметаллических элементов в природе

Неметаллы более распространены в природе, чем металлы.

В состав воздуха входят: азот, кислород, инертные газы.

Месторождения самородной серы в Прикарпатье – одни из крупнейших в мире.

Промышленным месторождением графита в Украине является Завальевское месторождение, сырье которого использует Мариупольский графитовый комбинат.

В Житомирской области, на Волыни обнаружены залежи пород, которые могут содержать алмазы, однако промышленные месторождения пока еще не открыты.

Атомы неметаллических элементов образуют различные сложные вещества, среди которых доминируют оксиды, соли.

— обмен веществ и энергии,

— превращение жидких жиров в твердые,

— сварка и резка тугоплавких металлов,

— восстановление металлов из руд.

— получение сульфатной кислоты,

— изготовление резины из каучука,

— изготовление лекарственных препаратов.

— составляющая нейтронопоглощающих материалов ядерных реакторов,

— защита поверхностей стальных изделий от коррозии,

— в полупроводниковой технике,

— изготовление преобразователей тепловой энергии в электрическую.

— для производства аммиака,

— для создания инертной среды при сварке металлов,

— в вакуумных установках,

— в качестве хладагента в морозильных установках,

— белый — для производства красного фосфора,

— красный — для производства спичек.

— в электронике и электротехнике для изготовления:

— для изготовления сплавов.

— производство хлоридной кислоты,

— мономеров для производства пластмасс,

— как дезинфицирующее средство.

— изготовление инструментов для бурения и резки,

— литейное, металлургическое, радиотехническое производство,

— в нефтегазодобывающей промышленности для буровых работ,

— изготовление антикоррозионных покрытий,

— замазок, уменьшающих силу трения,

Адсорбция – способность некоторых веществ (в частности углерода) удерживать на своей поверхности частицы других веществ (газа или растворенного вещества).

На адсорбционной способности углерода базируется его использование в медицине в лечебных целях – это таблетки или капсулы активированного угля. Их применяют внутрь при отравлении.

Чтобы вернуть адсорбенту способность к адсорбции и изъять адсорбированное вещество, достаточно нагрева.

Адсорбционную способность углерода использовал М.Д. Зелинский в изобретенном им в 1915 угольном противогазе – средстве индивидуальной защиты органов дыхания, лица и глаз человека от воздействия вредных веществ. В 1916 было налажено промышленный выпуск противогазов, что спасло жизнь сотен тысяч солдат во время Первой мировой войны. Усовершенствованный противогаз применяется и сейчас.

Напишите реакции взаимодействия: а) кремния с кислородом; б) кремния с водородом; в) цинка с хлором; г) фосфора с хлором. Назовите полученные соединения.


источники:

http://gigabaza.ru/doc/94515-p5.html

http://refleader.ru/bewpolqasrna.html