Wolfram alpha уравнение график по уравнению

WolframAlpha по-русски

Математика с WolframAlpha ® . Объяснения с примерами.

Как построить график функции в Wolfram|Alpha

Начнем с построения простого 2-мерного графика: plot sin(sqrt(7)x)+19cos(x) для x от -20 до 20

Если заменить 7 на (-7), то получим графики действительной и мнимой частей функции: plot sin(sqrt(-7)x)+19cos(x) для x от -5 до 5

В двух предыдущих примерах мы задавали область значений аргумента х. А что будет, если не задавать область значений х?

Одной из уникальных особенностей Wolfram | Alpha является автоматический выбор подходящего диапазона х для построения графиков функций одной и двух переменных, например, как при построении графика этой функции, содержащей функции Бесселя:

Обращаясь к Wolfram | Alpha, чтобы построить график функции, мы всегда используем префикс plot. Если же мы введем какое-либо одномерное выражение без префикса plot, то получим кроме графика функции в прямоугольных декартовых координатах, еще и много других сведений об этой функции.

Кроме того, изображение построенного графика будет крупнее, если вы используете префикс plot.

Одновременно в Wolfram | Alpha можно строить графики нескольких функций.

Если навести мышь на левый нижний угол изображения, то становятся доступными две ссылки: Save as image и Copyable planetext. Рассмотрим такой график:

Первая ссылка Save as image, которая открывается в левом нижнем углу изображения, позволяет сохранить построенный график, как картинку на компьютере пользователя — при нажатии на Save as image автоматически начнется загрузка изображения:

Вторая ссылка Copyable planetext позволяет увидеть код, аналогичный тому, который используется системой Matematica для построения графиков:

Теперь рассмотрим, как в Wolfram | Alpha построить графики функций двух переменных. Начнем с функции y^2 cos(x) для x от -6 до 6 и y от -2 до 2

Как и в одномерном случае, Wolfram | Alpha автоматически определяет подходящий диапазон значений аргументов, где функция имеет наиболее характерный вид. В случае, если Wolfram | Alpha не может найти подходящий диапазон, то это скорее всего потому, что система не смогла определить такой диапазон, где функция имеет наиболее интересное поведение. В этом случае, мы можем задать диапазон вручную, как это было сделано выше. Посмотрите следующие примеры:

  • plot sin (x cos(y))
  • plot (x^5 — 4 x^4 y^2 + x y — 1)/(y^11 — x^11 + 34 x^3y + 1)

А что, если вы захотите построить одновременно несколько графиков функций двух переменных?

Wolfram | Alpha строит отдельный график для каждой функции в списке. Вот еще несколько примеров:

  • plot (1 — x)/(2 x + 7 y), 5 x^2 — 3y^2 + 7 xy, (x + 2 y)^4
  • plot sqrt (1 + x y), sqrt (x^2 — y^2 + 2 x y)

Новой функцией Wolfram | Alpha является возможность строить графики действительной и мнимой частей комплексно-значных функций двух переменных:

  • plot sin(x + I y)
  • plot sqrt (y^2 + 4 y) — sqrt (-I x^3 + 3 x)

Во всех рассмотренных выше примерах Wolfram | Alpha строил также и контурные графики (линии уровня) в дополнение к трехмерным графикам (поверхностям). Чтобы увидеть связь между трехмерными и контурными графиками, нужно нажать кнопку “Show contour lines”. Отметим, что и трехмерные и контурные графики используют один и тот же диапазон аргументов.

Все трехмерные графики строятся с помощью функции plot3d системы Mathematica. Контурные графики были сделаны с помощью ContourPlot. В обоих случаях, чтобы увидеть код системы Mathematica для генерации изображения нужно нажать ссылку Copyable planetext в левом нижнем углу нужного изображения.

Графики функций в «Wolfram

Основные функции [ править]

  • : x^a
  • : abs(x)
  • : Sqrt[x]
  • : x^(1/n) или Sqrt(x,n) или Power(x, 1/n)
  • : a^x
  • : Log[a, x]
  • : Log[x]
  • : cos[x] или Cos[x]
  • : sin[x] или Sin[x]
  • : tan[x] или Tan[x]
  • : cot[x] или Cot[x]
  • : sec[x] или Sec[x]
  • : csc[x] или Csc[x]
  • : ArcCos[x]
  • : ArcSin[x]
  • : ArcTan[x]
  • : ArcCot[x]
  • : ArcSec[x]
  • : ArcCsc[x]
  • : cosh[x] или Cosh[x]
  • : sinh[x] или Sinh[x]
  • : tanh[x] или Tanh[x]
  • : coth[x] или Coth[x]
  • : sech[x] или Sech[x]
  • : csch[x] или Csch[е]
  • : ArcCosh[x]
  • : ArcSinh[x]
  • : ArcTanh[x]
  • : ArcCoth[x]
  • : ArcSech[x]
  • : ArcCsch[x]

Видео

Математический анализ

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы

Для того, чтобы найти предел последовательности нужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Примеры

  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции при можно совершенно аналогично: Limit[f[x], x -> a].

Производные

Для того, чтобы найти производную функции нужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], ]. В том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: D[f[x, y, z,…,t], j], где — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], ], где означает тоже, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Интегралы

Для того, чтобы найти неопределенный интеграл от функции нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл так же просто: Integrate[f[x], ] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Дифференциальные уравнения и их системы

Чтобы найти общее решение дифференциального уравнения нужно написать в строке WolframAlpha: F[x, y, y’,y»,…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y’,y»,…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: , где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока-что не поддерживается.

Найти точки экстремума и экстремальные значения функции

После последовательного выполнения предыдущих пунктов общей схемы исследования функции, можно сделать вывод относительно точек экстремума функции f(x). Для этого воспользуемся первым достаточным признаком существования экстремума функции одной переменной.

Для наглядности, нанесем все характерные точки данной функции, полученные в результате предыдущего исследования, на числовую ось:

number line -1.4595, -1, -0.795307, 0, 3, 5.92552

Используя первый достаточный признак существования экстремума функции одной переменной, определим точки экстремума (все отметки на этом рисунке сделаны мною вручную «на скорую руку»)

Теперь можно вычислить значения функции f(x) в точках ее экстремума. Для этого Wolfram|Alpha использует запрос вида: f(x), where x=x1, x2, x3, ….

Для нашей функции этот запрос имеет вид:

(5x^7+4x^6-3)/((3+2x-x^2)x^4)) where x=-1.4595, -0.795307, 5.92552

Решение различных систем уравнений, неравенств и уравнений

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Таким образом, график данной функции пересекается со его наклонной асимптотой в трех точках, абсциссы которых мы только что нашли.

Теперь, чтобы найти ординаты точек с найденными абсциссами x=a, b, c, … используем запрос f(x) where x=a, b, c, …

y=(5x^7+4x^6-3)/((3+2x-x^2)x^4)) where x=-0.82909, -0.72703, 0.488718

На втором этапе для исследования функции уже применяется производная. Цель второго этапа — найти критические точки первого рода, интервалы возрастания и убывания функции, точки экстремума и экстремальные значения функции, угловые точки графика функции (используется первая производная).

Ошибки при работе с системой [ править]

Система может допускать некоторые ошибки при решении сложных задач [1] . К примеру, если попытаться решить неравенство , для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4) , в котором будет присутствовать точка 1, но при этом происходит деление на ноль. Сейчас эта ошибка исправлена.

Двумерные графики

Создадим двумерный график полиномиальной функции:

(Интервал <x,min,max> используется для задания области определения аргумента.)

Out[1]=

Или построим двумерную область, заданную системой неравенств:

Out[2]=

Существует большое число опций для настройки визуализации, например, добавление легенд:


источники:

http://barahola.ru/stati/grafiki-funkciy-v-wolfram/

http://www.wolfram.com/language/fast-introduction-for-math-students/ru/plots-in-2d/