Ядерные реакции уравнение ядерной реакции

Ядерные реакции

Ядерная реакция – это процесс взаимодействия одного ядра с другим или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ -квантов.

Результатом ядерных реакций является образование новых радиоактивных изотопов, которые не существуют на Земле в естественных условиях.

Осуществление первой ядерной реакции пришлось на 1919 год. Э. Резерфорд обнаружил протоны в продуктах распада ядер. Он бомбардировал атомы азота α -частицами. Во время соударений частиц шла ядерная реакция, для которой подразумевалась специальная схема:

N 7 14 + He 2 4 → O 8 17 + H 1 1 .

В ее процессе выполняются законы сохранения импульса, энергии, момента импульса и заряда. Ядерные реакции характеризуются законом сохранения барионного заряда (количества нуклонов). Применимы и другие законы, используемые в ядерной физике и физике элементарных частиц.

Протекание ядерной реакции идет с помощью бомбардирования атомов быстрыми заряженными частицами (протонами, нейтронами, α -частицами, ионами). Изначально она была проведена с помощью протонов, содержащих большую энергию, полученных на ускорителе, еще в 1932 году:

Li 3 7 + H 1 1 → He 2 4 + He 2 4 .

Больше всего ученых заинтересовали реакции, протекающие при взаимодействии ядер с нейтронами. Беспрепятственный их проход в атомные ядра связан с отсутствием заряда. Физик Э. Ферми занимался изучением реакций, вызываемых нейтронами. Он выявил, что такие превращения могут быть вызваны медленными и быстрыми нейтронами, движущимися с тепловыми скоростями.

Они сопровождаются энергетическими превращениями.

Энергетический выход – это величина Q = M A + M B — M C — M D c 2 = ∆ M c 2 ,

где M A и M B подразумевают массы исходных продуктов реакции, а M C и M D массы конечных. Значение ∆ M называют дефектом масс.

Любые ядерные реакции протекают с выделением Q > 0 или поглощением Q 0 энергии. Последняя из них говорит о том, что первоначальная кинетическая энергия исходных продуктов не должна превышать величину Q , которая получила название порога реакции.

Чтобы у ядерной реакции был положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна равняться меньшему значению удельной энергии нуклонов конечных. Это значит, что ∆ M должно быть положительное.

Существуют два различных способа освобождения ядерной реакции: деление тяжелых ядер и термоядерные.

Деление тяжелых ядер

Данный способ освобождения ядерной реакции отличаются от радиоактивного распада ядер тем, что сопровождаются испусканием α — или β — частиц. Сама реакция – процесс деления нестабильного ядра на две крупные части сравнимых масс.

Ученые О. Ган и Ф. Штрассман в 1939 году открыли деление ядер урана. Продолжив исследования Ферми, они выявили, что бомбардирование урана нейтронами провоцирует появление элементов средней части периодической системы – радиоактивных изотопов бария Z = 56 , криптона
Z = 36 и других.

Уран можно встретить в виде двух изотопов U 92 238 ( 99 , 3 % ) и U 92 235 ( 0 , 7 % ) . Бомбардировка нейтронами ядра обоих изотопов расщепляет их на два осколка. Реакция деления U 92 235 происходит интенсивней на медленных (тепловых) нейтронах, а ядра U 92 238 вступают в реакцию только с быстрыми при наличии энергии, равной 1 М э В .

Большой интерес для ученых представляла реакция деления ядра U 92 235 . На данный момент существует около 100 различных изотопов с массовыми числами от 90 до 145 , которые возникают при его делении. Это можно изобразить в виде двух типичных реакций:

При делении ядра, инициированного нейтроном, появляются новые, которые вызывают реакции деления других ядер. Продуктами деления ядер урана- 235 являются другие изотопы бария, ксенона, стронция, рубидия и др.

Энергия, выделяемая при делении одного ядра урана, достигает 200 М э В . Оценка энергии производится с помощью удельной энергии связи нуклонов в ядре. Для ядер с массовым числом A ≈ 240 удельная энергия связи нуклонов в ядрах порядка 7 , 6 М э В / н у к л о н , а для ядер с массовыми числами А = 90 — 145 она составляет – 8 , 5 М э В / н у к л о н . Отсюда следует, что процесс деления способен освободить энергию около 0 , 9 М э В / н у к л о н , то есть 210 М э В на один атом урана. Энергия, выделяемая при полном делении всех ядер 1 г урана сравнима со сгоранием 3 т угля или 2 , 5 т нефти.

Нестабильность продуктов деления ядра выражается в содержании избыточного числа нейтронов. По отношению N Z наиболее тяжелые ядра составляют примерно 1 , 6 , при массовых числах от 90 до 145 отношение порядка 1 , 3 – 1 , 4 . Отсюда следует, что ядра-осколки испытывают последовательные β — распады, в результате которых число протонов возрастает, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.

Деление ядра урана- 235 вызвано столкновениями с нейтроном, после чего происходит освобождение еще двух или трех. При наличии благоприятных условий они попадают в другие ядра урана и вызывают их деления. Этот этап характеризуется нейронами в количестве 4 — 9 , которые далее вызывают его распад.

Лавинообразный процесс деления получил название цепной реакции.

На рисунке 6 . 8 . 1 представлена подробная схема такой реакции при делении ядер урана.

Рисунок 6 . 8 . 1 . Схема развития цепной реакции.

Чтобы такая реакция была осуществима, следует учитывать значение коэффициента размножения нейтронов, который должен быть больше 1 . Иначе говоря, каждое последующее поколение нейтронов должно быть больше, чем предыдущее. Коэффициент размножения определяется не только количеством образующихся нейтронов, но и условиями протекания самой реакции, так как их часть может поглощаться другими ядрами или выходить из зоны реакции.

Освободившиеся при делении ядер урана- 235 нейтроны могут вызывать дальнейшее деление, но только ядер данного урана, количество которого в природном уране всего 0 , 7 % .

Изотоп U 92 238 способен поглощать нейтроны, но цепной реакции это не вызовет. Ее возникновение возможно при повышенном содержании урана- 235 в самом уране, то есть при превышении критической массы. Небольшие куски урана имеют большинство нейтронов, которые при реакции не попали в ядра, в результате чего вылетают наружу.

Критическая масса для урана- 235 составляет 50 к г . Ее уменьшение производится с помощью замедлителей нейтронов. При распаде урана появляющиеся нейтроны обладают высокими скоростями, а вероятность захвата медленных нейтронов ядрами урана- 235 в сотни раз больше, чем быстрых. Лучшим замедлителем считается тяжелая вода D 2 O . Ее получают при взаимодействии чистой воды с нейтронами.

Графит также считается хорошим аналогом, но его ядра не поглощают нейтроны. При упругом взаимодействии с ядрами дейтерия или углерода они замедляются до значений тепловых скоростей.

Для снижения критической массы до 250 г актуально применение замедлителей нейтронов и специальной оболочки из бериллия, которая способна отражать их.

Атомные бомбы – это характерный пример цепной неуправляемой ядерной реакции, в результате которой происходит реактивное соединение двух кусков урана- 235 , каждый из которых обладает массой ниже критической.

Устройство, поддерживаемое управляемой реакцией деления ядер, называют ядерным (атомным) реактором.

На рисунке 6 . 8 . 2 изображена схема ядерного реактора на медленных нейтронах.

Рисунок 6 . 8 . 2 . Схема устройства ядерного реактора на медленных нейтронах.

Протекание ядерной реакции характерно для активной зоны реактора, которая заполнена замедлителем и пронизана стержнями с обогащенной смесью изотопов урана с повышенным содержанием урана- 235 (до 3 % ). Стрежни с кадмием или бором, поглощающие нейтроны, вводят в активную зону. Этот процесс позволяет контролировать скорость цепной реакции.

Охлаждение активной зоны производится с помощью прокачиваемого теплоносителя в качестве воды или металла с низкой температурой плавления (натрий). Передача тепловой энергии воде производится теплоносителем, находящимся в парогенераторе. Вода принимает состояние пара с высоким давлением, который направляется в турбину, соединенную с электрогенератором, после чего вода попадает в конденсатор. Отсутствие утечки радиации обусловлено работой теплоносителя I и парогенератора II по замкнутым циклам.

Турбина атомной электростанции используется в качестве тепловой машины, которая определяет по второму закону термодинамики общую эффективность станций. Современные атомные электростанции имеют КПД= 1 3 . Чтобы произвести 1000 М В т электрической мощности, необходимо достичь значения 3000 М В т тепловой мощности в реакторе. Около 2000 М В т уносятся с водой, которая охлаждает конденсатор. Это может привести к локальному перегреву естественных водоемов, то есть появлению экологических проблем.

Основной трудностью работы таких станций является обеспечение полной радиационной безопасности находящихся на ней людей и предотвращения случайных выбросов радиоактивных веществ, которые накапливаются в активной зоне реактора. Данной проблеме уделяется особое внимание. После произошедших аварий на АЭС в Пенсильвании в 1979 году и в Чернобыле в 1986 году вопрос безопасности становится особенно необходимым.

Практический интерес вызывают реакторы, которые способны работать без замедлителя на быстрых нейтронах. Они содержат ядерное горючее, содержащее не менее 15 % изотопа υ 92 235 . Преимущество таких реакторов состоит в том, что, работая, ядра урана- 238 способны поглощать нейтроны при помощи двух последовательных β -распадов, которые превращаются в ядра плутония, используемые как ядерное топливо:

Коэффициент воспроизводства таких реакторов достигает значений 1 , 5 , то есть на получение 1 , 5 к г плутония приходится 1 к г урана- 235 . Обычные реакторы также образуют плутоний, но в меньших количествах.

В США первый ядерный реактор был построен в 1942 году под руководством Э. Ферми, а в нашей стране в 1946 году с И.В. Курчатовым.

Термоядерные реакции

Еще один путь для освобождения ядерной энергии связан с реакциями синтеза. Слияние легких ядер и образование нового сопровождаются выделением большого количества энергии. На рисунке 6 . 6 . 1 показана зависимость удельной энергии от массового числа А в виде кривой. Даже ядра с массовым числом 60 характеризуются увеличением энергии нуклонов с ростом А . Отсюда получаем, что синтез любого ядра с A 60 из более легких ядер идет с выделением энергии. Общая масса продуктов реакции синтеза меньше массы первоначальных частиц.

Реакция слияния ядер получила название термоядерных, так как их протекание возможно только при высоких температурах.

Для вступления двух ядер в реакцию синтеза необходимо сблизить их на расстояние ядерных сил порядка 2 · 10 — 15 м , преодолев электрическое отталкивание их положительных зарядов. Для выполнения этого условия нужно, чтобы средняя кинетическая энергия теплового движения молекул превосходила потенциальную энергию кулоновского взаимодействия. Получение необходимой температуры Т дает величину 10 8 — 10 9 К . Она слишком высокая.

Температура 10 8 — 10 9 К указывает на нахождение вещества в ионизированном состоянии, то есть плазмы.

Энергия, выделяемая при термоядерных реакциях, в расчете на 1 н у к л о н в несколько раз превышает удельную энергию, которая выходит при цепной реакции деления ядер, показанная на примере формулы. То есть при реакции слияния ядер дейтерия и трития

H 1 2 + H 1 3 → H e 2 4 + n 0 1 + 17 , 6 выдает 3 , 5 М э в / к у л о н . Полное выделение энергии составляет 17 , 6 М э В . Ее считают наиболее перспективной термоядерной реакцией.

Возможность осуществления управляемых термоядерных реакций дает человеку новый и экологически чистый источник практически неисчерпаемой энергии. Но для получения сверхвысоких температур и удержания плазмы, нагретой до миллиарда градусов, требуется решение труднейшей научно-технической задачи для осуществления термоядерного синтеза.

Данный этап развития науки характеризуется наличием неуправляемой реакции синтеза в водородной бомбе. Достижение высокой температуры, необходимой для ядерного синтеза, производится путем взрыва урановой или плутониевой бомбы.

Роль термоядерных реакций важна в эволюции Вселенной. Энергия изучения Солнца и звезд характеризуется термоядерным происхождением. Примером служит ядерная реакция горения гелия, изображенная ниже.

Рисунок 6 . 8 . 3 . Возраст 10 7 лет.

Внутреннее строение звезды с массой 5 M ⊙ как функция возраста. Заштрихованы области протекания ядерных реакций. Конвективные зоны отмечены точками.

Рисунок 6 . 8 . 4 . Модель ядерного реактора.

Рисунок 6 . 8 . 5 . Модель синтеза гелия.

Рисунок 6 . 8 . 6 . Модель ядерных превращений.

Ядерные реакции

В курсе ядерной физики в школе изучается явление взаимного превращения одного вещества в другое. Данные превращения могут быть как спонтанные (радиоактивный распад), так и индуцированные (несколько ядер сталкивают друг с другом). В результате такой реакции получается новые вещества. Для описания таких превращений используют введённую нами форму записи для элементов и организуют их в подобие уравнения:

  • где
    • , — ядра до взаимодействия,
    • , — ядра после взаимодействия,
    • — — количество нуклонов (протонов+нейтронов) в соответствующих атомах,
    • — — количество протонов в соответствующих атомах.

Единственное, чем мы можем пользоваться в таких уравнениях, это простая логика — количество нуклонов и протонов в ходе реакции измениться не должно, таким образом, мы можем получить два уравнения:

Такие задачи обычно нацелены на поиск неизвестного элемента, и соотношений (2) — (3) для этого хватает. Находим количество протонов и нейтронов и, используя таблицу Менделеева, определяем нужный элемент.

Пример: пусть ядро азота и ядро гелия, сталкиваясь образуют ядро кислорода и неизвестный элемент. Найти данный элемент. По задаче сформируем уравнение:

Воспользуемся законом сохранения нуклонов (2) и (3):

Тогда искомый элемент — водород ( ).

Среди элементов, которые текстово могут встретиться в таких задачах, присутствуют:

  • нейтрон — ,
  • протон — , аналогом протона является ядро водорода ( ),
  • дейтерий — — ядро водорода (изотоп), которое приобрело дополнительный нейтрон,
  • тритий — — ядро водорода (изотоп), которое приобрело два дополнительных нейтрона,
  • — частица (альфа-частица) — ядро гелия — ,
  • — частица (бетта-частица) — по сути электрон — ,
  • — частица (гамма-частица) — фактический фотон — .

Бетта-частица является обычным электроном, однако в ядре электронов нет, тогда электроны из ядра получается в результате ядерной реакции: .

Вывод: задачи на данную тематику практически всегда касаются поиска конкретного элемента в реакции. Поиск осуществляется законом сохранения нуклонов (уравнения (1) и (2)).

Ядерные реакции

теория по физике 🧲 квантовая физика

Ядерная реакция — процесс взаимодействия атомного

Ядро — центральный органоид эукариотической клетки, содержащий хромосомы.

Осуществление ядерной реакции возможно только при сближении ядер атомов вещества вплотную и их попадании в радиус действия ядерных сил. Но ядра любых химических элементов имеют положительный заряд. Поэтому при сближении они отталкиваются за счет действия кулоновских сил.

Ядро — центральный органоид эукариотической клетки, содержащий хромосомы.

Ядро — центральный органоид эукариотической клетки, содержащий хромосомы.

Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:

14 . 7 N + 4 2 H e → 17 . 8 O + 1 1 H

Первая реакция с использованием ускорителей была проведена в 1932 году. Во время нее удалось расщепить атом лития на две α-частицы :

7 3 L i + 1 1 H → 4 2 H e + 4 2 H e

На фотографии треков в камере Вильсона (см. рисунок выше) видно, что ядра гелия разлетаются в разные стороны вдоль одной прямой. Это соответствует закону сохранения импульса (импульс протона много меньше импульса возникающих α-частиц; на фотографии треки протонов не видны).

Внимание! Количество нуклонов до и после реакции есть число постоянное.

Пример №1. При бомбардировке ядер бора 1 1 . 5 B протонами получается бериллий 8 4 B e . Какое еще ядро образуется при этой реакции?

Составим схему реакции:

11 . 5 B + 1 1 p = 8 4 B e + A . Z X

Количество нуклонов до и после реакции постоянно. Поэтому зарядовое число нового элемента будет равно разнице суммы зарядов бора и протона и заряда бериллия:

Z = ( 5 + 1 ) − 4 = 2

Массовое число нового элемента будет равно разнице суммы массовых чисел бора и протона и массового числа бериллия:

A = ( 11 + 1 ) − 8 = 4

Вещество с зарядовым числом 2 и массовым числом 4 — гелий. Следовательно, схема получает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

11 . 5 B + 1 1 p = 8 4 B e + 4 2 H e

Энергетический выход ядерных реакций

В ядерной реакции по распаду лития при столкновении с быстрым протоном кинетическая энергия двух образующихся ядер гелия оказалась больше кинетической энергии протона, который вступил в реакцию. И разница между ними составила 7,3 МэВ. Это говорит о том, что превращение ядер сопровождается изменением их внутренней энергии, т. е. изменение энергии связи. В рассмотренной реакции удельная энергия связи в ядрах гелия больше удельной энергии связи в ядре лития. Поэтому часть внутренней энергии ядра лития превращается в кинетическую энергию разлетающихся α-частиц.

Изменение энергии связи ядер означает, что суммарная энергия покоя участвующих в реакциях ядер и частиц не остается постоянной. Ведь энергия покоя ядра выражается через энергию связи. В соответствии с законом сохранения энергии изменение кинетической энергии в процессе ядерной реакции равно изменению энергии покоя участвующих в реакции ядер и частиц.

Энергетический выход ядерной реакции — разность энергий покоя ядер и частиц до реакции и после реакции.

где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции.

Энергетический выход ядерной реакции равен изменению кинетической энергии частиц, участвующих в реакции. Причем:

  • Если суммарная кинетическая энергия ядер и частиц после реакции больше, чем до реакции, то энергия выделяется.
  • Если суммарная кинетическая энергия ядер и частиц после реакции меньше, чем до реакции, то энергия поглощается.

Выделяющаяся при ядерных реакциях энергия может быть колоссальной. Но использовать ее при столкновениях ускоренных частиц (или ядер) с неподвижными ядрами мишени практически нельзя. Это связано с тем, что основная часть ускоренных частиц пролетает мимо ядер мишени, не приводя к возникновению реакции.

Пример №2. В результате деления ядра урана 235 . 92 U , захватившего нейтрон, образуются ядра бария 142 . 56 B a и криптона 91 36 K r , а также три свободных нейтрона. Удельная энергия связи ядер бария 8,38 МэВ/нуклон, криптона – 8,55 МэВ/нуклон и урана – 7,59 МэВ/нуклон. Чему равна энергия, выделенная из одного ядра урана?

Составим схему реакции:

235 . 92 U + 1 0 n → 14 2 . 56 B a + 9 1 36 K r + 3 1 0 n

Из условия задачи известно, сколько энергии имеет каждый нуклон. Нуклон — это 1 протон или нейтрон. Каждый элемент до и после реакции имеет определенные массовые числа:

Следовательно, чтобы найти выделившуюся энергию, нужно умножить количество нуклонов на их энергии, а затем найти разность энергий до и после реакции:

Q = E с в U A U − E с в B a A B a − E с в K r A K r

Q = 7 , 59 · 235 − 8 , 38 · 142 − 8 , 55 · 91 = − 184 , 36 ( М э В )

Отрицательное число получилось в связи с тем, что суммарная энергия связи ядер образовавшихся элементов больше энергии связи ядра атома урана. Это говорит о том, что энергия при проведении этой реакции будет выделяться в количестве 184,36 МэВ.

Ядерные реакции на нейтронах

Нейтроны не имеют заряда. Поэтому они беспрепятственно проникают в атомные ядра и вызывают их изменения. Например, столкновение нейтрона с ядром атома алюминия может вызвать следующую реакцию:

2 7 1 3 A l + 1 0 n → 2 4 11 N a + 4 2 H e

Итальянский физик Энрико Ферми, изучавший ядерные реакции на нейтронах, обнаружил, что ядерные превращения вызываются, как быстрыми, так и медленными нейтронами. Причем применение медленных нейтронов часто дает лучшие результаты. Поэтому быстрые нейтроны стали замедлять в воде. После соударения с ядрами водорода, которые по массе примерно равны массе нейтрона, эти нейтроны замедлялись. Их скорость становилась равной скорости теплового движения молекул воды.

Деление ядер урана

В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления —процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс. В 1939 году немецкие ученые Ган и Штрассман открыли деление ядер урана. Они обнаружили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и пр.

Уран встречается в природе в виде двух изотопов: 238 . 92 U (99,3 %) и 235 . 92 U (0,7 %). При бомбардировке нейтронами ядра обоих изотопов расщепляются на 2 части. Причем реакция деления 235 . 92 U лучше идет на медленных нейтронах, в то время как ядра 238 . 92 U вступают в реакцию деления только с быстрыми нейтронами, энергия которых составляет около 1 МэВ.

Наибольший интерес для ученых представила реакция деления ядра 235 . 92 U . Сегодня известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, которые образуются при делении этого ядра. Две наиболее распространенные реакции деления этого ядра имеют вид:

235 . 92 U + 1 0 n → 14 4 . 56 B a + 89 3 6 K r + 3 1 0 n

235 . 92 U + 1 0 n → 144 . 5 4 X e + 9 4 38 S r + 2 1 0 n

Ядро — центральный органоид эукариотической клетки, содержащий хромосомы.

Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющейся при делении ядра энергии можно сделать с помощью понятия удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90–145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

Цепные ядерные реакции

При делении ядра урана-235, вызванного столкновением с нейтроном, освобождается 2 или 3 нейтрона. При соблюдении некоторых условий эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией.

Цепная реакция — ядерная реакция, при которой вызывающие ее частицы (нейтроны), образуются как продукт этой реакции.

Схема цепной реакции урана-235 выглядит так:

Для осуществления цепной реакции необязательно каждый выделенный нейтрон должен вызывать распад другого ядра урана. Важно лишь, чтобы среднее число освобожденных нейтронов с течением времени не уменьшалось. Такое условие выполняется, если коэффициент размножения нейтронов (k) больше или равен единице: k ≥ 1 .

Коэффициент размножения нейтронов — отношение числа нейтронов в каком-либо «поколении» к числу нейтронов предшествующего поколения.

Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп урана-238 также может поглощать нейтроны, но при этом не возникает цепной реакции.

Ядерный реактор

Ядерный реактор — устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова.

Ядерные энергетические реакторы используются для выработки электроэнергии на атомных электростанциях, в судовых энергетических установках, атомных теплоэлектроцентралях, а также на атомных станциях теплоснабжения.

Основные элементами ядерного реактора:

  • ядерное горючее (обычно уран-235);
  • замедлитель нейтронов — для получения медленных электронов (тяжелая вода, захватывающая нейтроны, или графит, не захватывающий их);
  • теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий);
  • регулирующие стержни (бор, кадмий) — для регулирования количества высвобожденных электронов (эти вещества способны поглощать много нейтронов);
  • защитная оболочка, которая задерживает излучения (железобетон).

Цепная реакция, как известно, может протекать только при коэффициенте размножения нейтронов k ≥ 1 . Но он может поддерживаться в этом значении только при условии, что масса урана превышает некоторое критическое значение.

Критическая масса — наименьшая масса делящегося вещества, при которой может протекать цепная реакция.

Для чистого урана-235 критическая масса равна 50 кг. При такой массе шар из урана имеет радиус всего 9 см. Если в реакторе использовать оболочку, которая отражает уран, то критическую массу можно снизить до 250 г.

Это интересно! Реактор, работающий на уране-235 и медленных нейтронах, является энергетическим. Его применяют для производства энергии. Но реактор, работающий на уране-235 и быстрых нейтронах, является реактором-размножителем. При распаде 1 кг урана в этом случае образуется 1,5 кг плутония, который также можно использовать как ядерное топливо. При делении урана медленными нейтронами входит в 2,5 раза меньше плутония.

Термоядерные реакции

Масса покоя ядра урана больше суммы масс покоя осколков, на которые делится ядро. Для легких ядер дело обстоит как раз наоборот. Так, масса покоя ядра гелия значительно меньше суммы масс покоя двух ядер тяжелого водорода, на которые можно разделить ядро гелия. Поэтому при слиянии легких ядер масса покоя уменьшается. Следовательно, должна выделяться значительная энергия. Подобного рода реакции слияния легких ядер могут протекать только при очень высоких температурах. Поэтому они называются термоядерными.

Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре.

Ядра сливаются только при сближении на расстоянии около 10 -12 см — тогда они попадают в сферу действия ядерных сил. Этому сближению препятствует кулоновское отталкивание ядер, которое может быть преодолено лишь за счет большой кинетической энергии теплового движения ядер.

Энергия, которая выделяется при термоядерных реакциях в расчете на один нуклон, превышает удельную энергию, выделяющуюся при цепных реакциях деления ядер. Так, при слиянии тяжелого водорода — дейтерия — со сверхтяжелым изотопом водорода — тритием — выделяется около 3,5 МэВ на один нуклон. При делении же урана выделяется примерно 1 МэВ энергии на один нуклон.

Термоядерные реакции играют большую роль

Эволюция — необратимое историческое развитие живой природы.

Если человечество научится управлять термоядерными реакциями, то на Земле появится неисчерпаемый источник энергии. Но пока это невозможно, так как нет таких веществ, которые могли бы выдержать температуру, при которых могут сливаться ядра. Однако неуправляемые реакции проведены уже были. Речь идет о термоядерных бомбах, которые могут уничтожить все человечество.

Алгоритм решения

  1. Записать правило сохранения нуклонов до и после реакции.
  2. Составить уравнение и вычислить искомое массовое число.

Решение

Количество нуклонов до и после реакции постоянно. Поэтому сумма массовых чисел до реакции и после нее не изменится. Составим уравнение, используя только массовые числа ядер и частиц:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Определите массовое и зарядовое число частицы, которая вызывает ядерную реакцию3 7 Li + … → 4 8 Вe + 0 1 n?

Алгоритм решения

  1. Записать правило сохранения нуклонов до и после реакции.
  2. Составить уравнение и вычислить искомое массовое число.
  3. Составить уравнение и вычислить искомое зарядовое число.

Решение

Количество нуклонов до и после реакции постоянно. Поэтому сумма массовых чисел до реакции и после нее не изменится. Составим уравнение, используя только массовые числа ядер и частиц:

Составим уравнение, используя только массовые числа ядер и частиц:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Закону сохранения электрического заряда не противоречит реакция:

Алгоритм решения

  1. Записать правило сохранения нуклонов до и после реакции.
  2. Проверить, где выполняется это правило.

Решение

Количество нуклонов до и после реакции постоянно. Поэтому сумма массовых и зарядовых чисел до реакции и после нее не изменится. Проверим правильность реакций.

Подходит только реакция «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить


источники:

http://www.abitur.by/fizika/teoreticheskie-osnovy-fiziki/elementy-yadernoj-fiziki/yadernye-reakcii/

http://spadilo.ru/yadernye-reakcii/